

https://doi.org/10.11646/zootaxa.5514.3.1

http://zoobank.org/urn:lsid:zoobank.org:pub:4530DFA0-52E0-4557-8A13-36122AD3F81A

A redescription and range extension of *Trimeresurus caudornatus* Chen, Ding, Vogel & Shi, 2020 (Serpentes: Viperidae)

TAN VAN NGUYEN^{1,2,*}, SABIRA S. IDIIATULLINA³, WIN PAING OO⁴, JUSTIN L. LEE⁵, NIKOLAY A. POYARKOV^{3,6,*}, PATRICK DAVID⁷ & GERNOT VOGEL^{8,*}

¹ Institute for Research and Training in Medicine, Biology and Pharmacy, Duy Tan University, Da Nang, 550000, Vietnam

² College of Medicine and Pharmacy, Duy Tan University, 120 Hoang Minh Thao, Lien Chieu, Da Nang, 550000, Vietnam

³ Department of Vertebrate Zoology, Lomonosov Moscow State University, Leninskiye Gory, GSP-1, Moscow 119991, Russia

⁴ Native Species Conservation and Identification in Myanmar, Mandalay, Myanmar

⁵ Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, 48109, United States

⁶ Joint Vietnam - Russia Tropical Science and Technology Research Centre, 63 Nguyen Van Huyen Road, Nghia Do, Cau Giay, Hanoi, Vietnam ⁷Institut de Systématique, Évolution et Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, Sorbonne Université, École

Pratique des Hautes Études, Université des Antilles, CNRS, CP 30, 57 rue Cuvier, F-75005 Paris, France.

⁸ Society for South East Asian Herpetology, Im Sand-3, D-69115 Heidelberg, Germany

Tan Van Nguyen: https://orcid.org/0000-0001-5413-968X

Sabira S. Idiiatullina: https://orcid.org/0000-0003-1647-7754

Win Paing Oo:
https://orcid.org/0009-0006-9916-3169

Justin L. Lee: https://orcid.org/0000-0002-9782-8503

Nikolay A. Poyarkov: https://orcid.org/0000-0002-7576-2283

Patrick David:
https://orcid.org/0000-0001-7562-684X

Gernot Vogel: https://orcid.org/0000-0002-4542-518X

*Corresponding authors: 🖃 tan.sifasv@gmail.com; 🖃 n.poyarkov@gmail.com; 🖃 Gernot. Vogel@t-online.de

Abstract

The pitviper species *Trimeresurus caudornatus* was recently described based on only two specimens from Nabang Town, Yingjiang County, Yunnan Province, China. Here, we provide additional data on this species based on a re-examination of 19 preserved specimens, 16 specimens reported in earlier literature sources, and additional photo-documented records from northern Myanmar (Burma) and adjacent China. All new specimens were previously identified as *Trimeresurus albolabris* sensu lato or *Trimeresurus septentrionalis* sensu lato. Molecular analyses based on mitochondrial DNA supported the morphological findings in establishing conspecificity with *T. caudornatus*. The newly identified specimens have a pairwise distance of only 0.4–2.6% from those of the type series of *T. caudornatus* (based on the cytochrome *b* gene). Based on these findings, we confirm the presence of *T. caudornatus* from Myanmar and update its diagnostic characters and distribution. We suggest the species should be considered as Least Concern (LC) following the IUCN's Red List categories. Further studies reassessing the populations of the *Trimeresurus albolabris* complex are required.

Key words: morphology, Myanmar, new record, phylogeny, taxonomy, Trimeresurus albolabris, T. salazar

Introduction

Asian pit vipers of the genus *Trimeresurus* Lacépède, 1804 represent one of the most widespread and diverse radiations of medically significant venomous snakes, with 53 species currently recognized (Mirza *et al.* 2023; Chan *et al.* 2023; Idiiatullina *et al.* 2023, 2024a-c). Members of *Trimeresurus* have a broad distribution, extending from northeast India and Nepal in the west, to China and the Lesser Sunda Islands in the east and south-east (Gumprecht *et al.* 2004; Vogel, 2006; Poyarkov *et al.* 2023; Uetz *et al.* 2024). The taxonomic diversity of the genus *Trimeresurus* remains both underestimated and controversial, in part because many taxa are morphologically similar to one another.

The systematics of the *Trimeresurus albolabris* species complex is especially intricate (Vogel *et al.* 2023). This complex of species is widely distributed across the Indo-Himalayan region of India and Nepal, the southern-half of

China, and the majority of Southeast Asia. Members of this complex are characterized by the combination of a long papillose or calyculate hemipenis, a first supralabial partially or totally fused with nasal scale, uniform green dorsal colouration, a lateral stripe present on the first few dorsal scale rows in one or both sexes, relatively small eyes, supraoculars narrower than the internasals, and an elongate oval-shaped head in lateral profile (Regenass & Kramer, 1981; Malhotra & Thorpe, 2004; Malhotra *et al.* 2011; Vogel *et al.* 2022, 2023). Throughout the past two decades, several pit vipers related to *T. albolabris* have been elevated to species rank or described as new species (Zhu *et al.* 2016; Chen *et al.* 2020, 2021; Mirza *et al.* 2020, 2023). However, the exact distributional limits between many of these species are poorly understood.

FIGURE 1. Map showing distributions of *Trimeresurus caudornatus* (red star: type locality). Notes: numbers indicate the different localities where this species has been recorded (see Appendix Table S8 for details of localities).

The Ornamental-tailed Pitviper, *Trimeresurus caudornatus* Chen, Ding, Vogel & Shi, 2020 belongs to the *Trimeresurus albolabris* species complex based on morphological and genetic data (Chen *et al.* 2020). This species was described based on one male and one female specimen, both originating from Nabang Town in Yingjiang County, Yunnan Province, China (Chen *et al.* 2020; see Fig. 1). The species is characterized by having a dark green dorsum with a lighter green lip; an absence of postocular streaks; a faint green yellow ventrolateral stripe present on the first row of dorsal scales; a golden yellow iris; and orange-red midventral stripe along the underside of the tail. Recent molecular phylogenies have demonstrated that populations previously identified as *Trimeresurus albolabris* Gray, 1842 and *T. septentrionalis* Kramer, 1977 from northern Myanmar (i.e., Mandalay Region and Kachin State) cluster within the same lineage as the holotype of *T. caudornatus* (Mallik *et al.* 2021; Vogel *et al.* 2022; Mirza *et al.* 2023). These results suggest that *T. caudornatus* has a more expansive distribution than currently recognized. However, most of these molecular studies were unaware that some of their genetic samples corresponded with *T. caudornatus* at the time of their publication, or did not provide morphological data associated with the specimens they sampled. Vogel *et al.* (2023) included preliminary morphological and distributional data suggesting that northern Myanmar

populations of *T. albolabris* and *T. septentrionalis* belonged to *T. caudornatus* but did not provide a detailed description of their material, as the scope of their paper was the description of neighboring species *Trimeresurus uetzi* Vogel, Nguyen & David. As a consequence, the morphological diagnosis of *T. caudornatus* has remained limited to the holotype and paratype, and the status of several populations of *Trimeresurus* from northern Myanmar has remained unresolved until now. To address this issue, we re-examined specimens previously identified as *T. albolabris* or *T. septentrionalis* from northern Myanmar (Sagaing and Mandalay regions, and Kachin State) deposited in five natural history collections, including all of the specimens that were included in Vogel *et al.* (2023). We also refer to data of 16 specimens of *T. "albolabris*" from northwest Yunnan Province that were reported in the literature by Zhao *et al.* (1998). Our results confirm that the specimens from Myanmar, as well as Longchuan and Tengchong counties, Yunnan Province, China, should be re-identified as *T. caudornatus*. We herein confirm the occurrence of *T. caudornatus* in Myanmar, update the distribution of this species and revise its diagnostic characters.

Material and Methods

Material examined. We examined 19 specimens that were previously registered as *Trimeresurus albolabris* or *T. septentrionalis* from northern Myanmar (see Table 1), and three digital images (DTU 651 from Yingjiang County, Dehong City, Yunnan Province, China; DTU 652 from Chuxiong City, Yunnan Province, China and DTU 653 from Mandalay City, Mandalay Region, Myanmar) of genuine specimens of *T. caudornatus*. Morphological comparisons were based on literature data from Kramer (1977), Chen *et al.* (2020, 2021); Mirza *et al.* (2020), Rathee *et al.* (2021), Vogel *et al.* (2023), Biakzuala *et al.* (2024), and 339 preserved specimens of other members of the *Trimeresurus albolabris* species complex (see Appendix Table S1 and Appendix II of Vogel *et al.* 2023 for a list of specimens examined for this study).

Morphological analyses: Altogether, 45 morphological characters (see Appendix Table S2) were considered, either as raw variables or derived from the raw characters listed above. Measurements were taken with a slide-caliper to the nearest 0.1 mm, except body and tail lengths, which were measured to the nearest of 1 mm with a measuring tape. Ventral scale numbers were counted according to Dowling (1951). Half ventrals were counted as a single scale. The enlarged shield(s) anterior to the first ventral were regarded as preventral(s). We regard the first subcaudal scale as the first scale on the underside of the tail posterior to the vent that meets an opposite scale and did not include the unpaired terminal scute (tail tip) in subcaudal counts. The dorsal scale rows were counted at one head length behind the head, at midbody approximately one-half the body length of each specimen, and at one head length before the vent. Values for paired head characters were recorded on both sides of the head and are reported in left / right order. The eye diameter (ED) was measured horizontally (the greatest diameter of the orbit); the distance from the eye to the nostril (EN) was measured from the anterior margin of the eye to the posterior margin of the nostril; the distance from the eye to the lip (SL) was measured from the ventral margin of the middle of the eye to the ventral margin of the upper labial below it; the head width (HW) was measured at the widest part of the head on posterior side. The sex was determined by dissection of the ventral tail base in preserved specimens and with a probe in live individuals.

To determine whether *Trimeresurus caudornatus* and other species related to *T. albolabris* and *T. septentrionalis* (including type specimens of the three species, in total 142 adult males specimens and 197 adult females specimens) exhibit significant morphological differences, we ran univariate statistical analyses on four scale counts (VEN, SC, VEN+SC, SL, and IL) and one body measurement ratio (TaL/TL). Since most of these variables represent meristic data, no size-correction on the morphological data was conducted for statistical analyses and both juvenile and adult specimens were included in all analyses. Males (N = 142) and females (N = 197) were analyzed separately in each analysis owing to the presence of sexual dimorphism present within many members of *Trimeresurus* (Zhu *et al.* 2022). We first subjected each character (separated by male and female specimen series) to Shapiro–Wilks Tests and Levene's Tests to determine if each data exhibits normality and homoscedasticity, respectively. Since most of the characters exhibited both non-normal and non-homoscedastic distributions, we employed pairwise Mann–Whitney U Tests (the non-parametric alternative to Student's *t*–tests) to determine whether scale counts and measurements exhibited statistically significant differences between species. In all cases, we considered characters to be significantly different if corresponding *p*–values were less than or equal to 0.05.

Molecular phylogeny. We synthesized previously published sequences of *Trimeresurus albolabris* complex members from GenBank to estimate the phylogenetic relationships of the genus *Trimeresurus* and genetically identical samples referrable to *T. caudornatus*. We focused on sequences for the mitochondrial DNA gene cytochrome *b* (cyt

b) as it is phylogenetically informative for most viperids and has the largest availability of any gene for *Trimeresurus*. We updated the taxonomic identities of the gene sequences to current taxonomy (Vogel *et al.* 2023; this work), regardless of what it had been originally submitted as. We aligned the cyt b sequences of 40 species of *Trimeresurus* species representing all major groups within the genus, ten species of the genus *Craspedocephalus* Kuhl & Hasselt; we used the sequence of *Azemiops feae* Boulenger and *Protobothrops elegans* (Gray) to root the tree (GenBank accession numbers, voucher specimens, locality, and source information are summarized in Appendix Table S3).

We initially aligned nucleotide sequences in MAFFT v.6 (Katoh *et al.* 2019) with default parameters, subsequently checked them by eye in BioEdit 7.0.5.2 (Hall, 1999) and slightly adjusted sequences for translation whenever required. Uncorrected pairwise genetic distances (p-distances) between sequences were calculated with MEGA 6.0. (Tamura *et al.* 2013) based on the cyt *b* sequences of all *Trimeresurus* subgenus samples, and missing data or gaps were affected by the pairwise deletion option. When the same model was proposed for different codon partitions of a given gene, they were treated as a single partition.

Phylogenetic trees were inferred using Bayesian inference (BI) and maximum likelihood (ML) approaches. We used the IQ-TREE webserver (Trifinopoulos *et al.* 2016) to generate the ML-tree and evaluate the confidence in tree topology by 1000 ultrafast-bootstrap replications (UFBS). The best-fit substitution models for the dataset were selected for gene and codon positions in ModelFinder using the Akaike information criterion (AIC) in IQ-TREE. We conducted BI in MrBayes 3.1.2 (Huelsenbeck & Ronquist 2001) using the same partition scheme inferred for the ML analysis. Metropolis-coupled Markov chain Monte Carlo (MCMCMC) analyzes were run with one cold chain and three heated chains for one million generations and sampled every 1000 generations. The run was checked to ensure the effective sample sizes (ESS) were all above 200 by exploring the likelihood plots using Tracer v. 1.7 (Rambaut *et al.* 2018). We discarded the initial 1000 trees as burn-in. For BI-analysis we assessed the confidence in tree topology by the posterior probability (PP) (Huelsenbeck & Ronquist 2001). We *a priori* considered tree nodes with UFBS values of 95% or higher and PP values over 0.95 as strongly supported; UFBS values between 95% and 90% and PP values between 0.95 and 0.90 as moderately supported, and any values lower than these were considered as lacking node support (Huelsenbeck & Hillis 1993).

Abbreviations. *Morphology and morphometry*. DSR: dorsal scale rows; IL: infralabials; SC: number of subcaudals excluding terminal scute; SL: number of supralabials; SVL: snout ventral length from snout to last ventral scale; TaL: tail length from anal to tail tip; TL: total length from the tip of the snout to the end of the tail; TL/TaL: ratio of total length to tail length; VEN: number of ventrals. *Other abbreviations*. Mt.: mount; NP: National Park; WS: Wildlife Sanctuary.

Institutions and museums acronyms. CAS: California Academy of Sciences, San Francisco, USA; CESS: Centre for Ecological Sciences, Bangalore, India; KIZ: Kunming Institute of Zoology, Chinese Academy of Sciences, Yunnan, China; MHNG: Muséum d'Histoire Naturelle de la Ville de Genève, Genève, Switzerland; MNHN: Muséum national d'Histoire naturelle, Paris, France; MSNG: Museo Civico di Storia Naturale "Giacomo Doria" Genova, Liguria, Italy; NHMUK (formerly BMNH): The Natural History Museum, London, UK; NHMW (formerly NMW) = Naturhistorisches Museum Wien, Vienna, Austria; QSMI: Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok, Thailand; RMNH: Nationaal Natuurhistorisch Museum (Naturalis), Leyden, The Netherlands; SMF: Natur-Museum und Forschungs Institut Senckenberg, Frankfurt-am-Main, Germany; SYS: Sun Yat-Sen University, Guangdong, China; USNM: National Museum of Natural History, Smithsonian Institution, Washington, USA; ZFMK: Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany; ZMB: Zoologisches Museum für Naturkunde der Humboldt-Universität zu Berlin, Berlin, Germany; ZMH: Zoologisches Museum Hamburg, Universität Hamburg, Hamburg, Germany; ZMNH: Zhejiang Museum of Natural History, Zhejiang, China; ZSI: Zoological Survey of India, Kolkata [Calcutta], West Bengal, India

Results

Phylogenetic relationships

The ML and BI analyses recovered trees with similar topologies, but minor discrepancies associated in deeper and shallower nodes were observed (Fig. 2). With respect to the position of *T. caudornatus*, our phylogenetic results mostly conform to those of Zhu *et al.* (2016), Chen *et al.* (2020), Mirza *et al.* (2023), and Vogel *et al.* (2022), who focused on relationships among *Trimeresurus albolabris* and *T. septentrionalis*, to which *T. caudornatus* belongs. The reconstructed phylogenetic relationship indicates that four species: *T. caudornatus*, *T. salazar* Mirza, Bhosale,

FIGURE 2. Maximum Likelihood (ML) tree of *Trimeresurus* derived from the analysis of cyt *b* mitochondrial DNA gene sequences. For voucher specimen information and GenBank accession numbers see Appendix Table S3. Numbers at tree nodes correspond to ML UFBS/BI PP support values, respectively.

Phansalkar, Sawant, Gowande & Patel, *T. septentrionalis*, and *T. uetzi* Vogel, Nguyen & David are nested within a single monophyletic clade (Fig. 2); however, the nodes connecting each species in this clade received poor support in the ML analysis (UF BS = 55) and exhibited different phylogenetic positions in the BI genealogy. Despite

the low branch support of the clade containing all four species, the internal nodes of each species within that clade were all strongly supported, including *T. caudornatus* (100/1.0). The uncorrected *p*-distances of the cyt *b* gene fragment among members of the *Trimeresurus albolabris* and *T. septentrionalis* species groups are presented in see Appendix Table S4. Three sequences of *Trimeresurus* spp. (KP999351 [CAS 216144], KP999351 [CAS 216173], and ON804486 [CAS 235956], respectively) reported from Sagaing Region and Kachin State, Myanmar, respectively, were approximately 0.4–2.6% divergent from the type series of *Trimeresurus caudornatus* from Nabang Town, Yingjiang County, Yunnan Province, China. These intraspecific distances are consistent with other species related to *T. albolabris* and *T. septentrionalis* (Appendix Table S4), with the geographically adjacent species *T. uetzi* having intraspecific distances ranging from 0.0–3.6% and *T. albolabris* having a much wider span of intraspecific divergences (0.1–4.3%). Genetic distances between *T. caudornatus* and related species were consistent with other pairwise distances between other related *Trimeresurus*. Specifically, *T. caudornatus* was 5.3–7.3% divergent from *T. septentrionalis*, and 5.8–7.0% divergent from *T. uetzi*. These results strongly suggest that the northern Myanmar populations of *Trimeresurus* are genetically conspecific with *T. caudornatus*.

Morphological analysis

With the exception of relative tail length (TaL/TotalL), statistically significant differences were found between all Trimeresurus in the remaining four morphological characters we examined (see Suppl. material 1: table S5 for more details). However, most of these differences were subtle, and overlaps between scale counts are present. Both male and female *Trimeresurus caudornatus* had a statistically higher number of ventrals (p < 0.0001 in males; p =0.0163 in females) relative to T. albolabris. Male T. caudornatus have a slightly lower number of subcaudals than T. septentrionalis (p = 0.0289). Female T. caudornatus also have a statistically lower number of ventrals (p = 0.0039) and subcaudals (p = 0.0077) than female *T. septentrionalis*, and a slightly higher number of subcaudals (p = 0.0020) and infralabials (p = 0.047) than female Trimeresurus uetzi. We also examined the morphology of other Trimeresurus specimens previously registered as T. albolabris or T. septentrionalis from Myanmar, including specimen CAS 216144 (see Fig. 3 E–F), which was sequenced for genetic data, and found that they were all morphologically referrable to T. caudornatus. The Burmese specimens of Trimeresurus share the presence of a distinct midventral stripe on the underside of the tail and have a faint ventrolateral stripe on the first scale row of the dorsal surface, all of which match the type series from Yunnan Province (Chen et al. 2020). Moreover, live photographs of specimens from Myanmar lack a distinct postorbital streak and have a golden yellow iris, characters that are not found in other closely related species such as T. salazar and T. uetzi. These results support our hypothesis that previous records of T. albolabris (restricted to southern China, Vietnam, Laos, Cambodia, Thailand, and Indonesia) and T. septentrionalis (restricted to western and central Himalayan regions of Nepal and northern India) in northern Myanmar (Sagaing, Mandalay, and Kachin) and northwestern Yunnan (Longchuan and Tengchong counties), China, should be referred to as T. caudornatus. In conjunction with our genetic results, we extend the distribution of Trimeresurus caudornatus to Myanmar and provide an expanded diagnosis and description below.

Taxonomic account

Trimeresurus caudornatus

(Table 1; Figs. 3-5)

Trimeresurus caudornatus Chen, Ding, Vogel & Shi *in* Chen *et al.* (2020: 116, Fig. 2A-B, 3A-D & 4A-D). Holotype: ZMNH AR1238, adult male, collected by L. Ding and Z. Chen on 17 September 2018. Type locality: Nabang Town, Yingjiang County, Dehong City, Yunnan Province, China (24.6973°N, 97.5805°E; elevation 389 m asl.).

Chresonymy

Trimeresurus gramineus (non Coluber gramineus Shaw, 1802)—Wall (1925: 821; 1926: 566, both in part).

Trimeresurus albolabris (non Trimesurus albolabris Gray, 1842)—Smith (1943: 523, in part); Zhao et al. (1998: 448, in part); Orlov et al. (2002: 189, in part); Leviton et al. (2003: 444, in part, 462); David et al. (2003: 157, in part), Gumprecht et al. (2004: 30, in part); Wogan & Win (2005: 72, in part); Vogel (2006: 83, in part); Stuart et al. (2012: 1 & 3, in part); Yang & Rao (2008: 336, in part); Wallach et al. (2014: 726, in part); Zhu et al. (2022: 32, in part); Uetz et al. (2024, page "Trimeresurus albolabris", in part);

Cryptelytrops albolabris—David et al. (2001, 221, in part), Leviton et al. (2008: 71, in part).

Trimeresurus albolabris albolabris—David & Vogel (1998: 87, in part), Regenass & Kramer (1981: 168 & 169, in part); David & Tong (1997: 26, in part).

Trimeresurus septentrionalis (non Trimeresurus septentrionalis Kramer, 1977)—Orlov et al. (2002: 352; in part); Zhu et al. (2016: 253, 256, 258 & 259, in part).

Trimeresurus caudornatus—Chen *et al.* (2021: 167, 172, 175 & Tables S1–S2); Mallik *et al.* (2021: 580); Vogel *et al.* (2022: 344, 347, 358, 363, 365); Vogel *et al.* (2023).

Specimens examined (n=19, all from Myanmar): *Sagaing Region*: CAS 244953 (adult male) from Homalinn, Khandi District, USNM 537444 (adult male) and USNM 524076 (adult female) from Chatthin W.S., Kanbalur Township. *Mandalay Region*: CAS 216144 (subadult female) from Shwe U Daung, Pyin Oo Lwin District. *Kachin State*: CAS 230260, CAS 232425 (two subadut females), CAS 241264 (subadult male), CAS 245234 (subadult female) from Indawgyi Lake, Myitkyina District; CAS 221549 (subadult male), CAS 224646 (adult male) and CAS 230233 (adult female) from Putao District; MNHN RA-1893.0415, MSNG 30533-B (two adult males) & MNHN RA-1893.0416, MSNG 2180, MSNG 30533-A (three adult females) from Bhamo District; NHMUK 1974.907 (adult male) from Sumprabum District; MSNG 30814 (sub adult female) from Teinzo, Bhamo District; NHMUK 1974.906 (adult female) from N'Changyang District (remark: for more information details of CAS specimens see Appendix Table S6).

Additional material (n=3). DTU 651 (Digital images) photo taken by Spark T on 29 August 2023 in Pingyuan Town, Yingjiang County, Dehong City, Yunnan Province, China. DTU 652 (Digital images) photo taken by Fan Gao on 14 May 2021 in Chuxiong City, Yunnan Province, China. DTU 653 (Digital images) photo taken by Kyaw Zin Htet on 13 Jun 2023 in Mandalay City, Mandalay Region, Myanmar.

Referred material (n=16; all from Yunnan Province, China, based on specimens cited by Zhao *et al.* 1998). *Longchuan County*: KIZ 74I0024 (adult male), KIZ 74I0032-33 (two subadult males), KIZ 74I0045-46 (two adult males), KIZ 74I0006, KIZ 74I0010, KIZ 74I0018, KIZ 74I0027-28 (five adult females), KIZ 74I0012 (subadult female). *Tengchong County*: KIZ 74I10358 (adult female).

Revised diagnosis. A species of *Trimeresurus* inhabiting Yunnan Province (China) and Northern Myanmar showing the following combination of characters: head and body generally dark green, upper labials light green; postocular stripes absent in both sexes; ventrolateral stripe faint green-yellow, present on the first row of DSR in both sexes; iris golden yellow in both sexes; dorsal surface of the tail mostly dark red, lateral and ventral surfaces green; an orange-red medial stripe present across the underside of the tail; DSR 21(rarely 22 or 23)–21–15; VEN 158–167 in males, 158–174 in females; SC 53–74 in males, 52–68 in females; ratio TaL/TL 0.17–0.22 in males, 0.14–0.18 in females; Cep 10–12; first upper labial partially fused to the nasal; hemipenes elongated, bilobed at the level of the 6th subcaudal, tips reaching SC 37–38, small spines present posterior to the bifurcation, *sulcus spermaticus* shallow, visible, divides at the base of the organ (based on Zhao *et al.* 1998; Chen *et al.* 2020, and our material).

Comparisons. *Trimeresurus caudornatus* is morphologically similar to *Trimeresurus salazar*, a species described from Pakke Tiger Reserve, East Kameng District, Arunachal Pradesh State, India, which is widely distributed across central and northeastern India, eastern Nepal, Bhutan, and Bangladesh (Mirza *et al.* 2020; Vogel *et al.* 2022). *Trimeresurus caudornatus* differs from *T. salazar* by having a dark green dorsum (vs. usually green-yellow, more so in females); ventrolateral stripes faint, green-yellow and poorly contrasting dorsal ground color (vs. stripes distinct, brick red ventrally plus white dorsally, and conspicuous); presence of an irregular, red-orange stripe on the midventral surface of the tail (vs. absent); iris golden yellow (vs. copper) and tip of the hemipenes reaching SC 37–38 (vs. 12–13).

Trimeresurus caudornatus differs from *Trimeresurus albolabris* s. str. (restricted to southeastern China, Vietnam [throughout except the northwest], Laos [central and southern], Cambodia [throughout], and Thailand [eastern and central]) by having faint ventrolateral stripes that are greenish-yellow and poorly contrasted (vs. distinct, white, conspicuous); postocular streak absent in males (vs. present); iris golden yellow (vs. copper); tip of hemipenes reaching SC 37–38 (vs. 15–18) and small scales absent in front of the pit (vs. usually present).

Trimeresurus caudornatus differs from *T. erythrurus* (Cantor), a species present in Myanmar, India, Bangladesh, possibly in Bhutan, by having: ventrolateral body stripes faint, greenish-yellow, poorly contrasted (vs. distinct, white, conspicuous); postocular stripe absent in males (vs. present); iris golden yellow (vs. copper); temporal scales and dorsal body scales feebly keeled (vs. strongly keeled); lower number of mid-body scale rows (21 vs. 23 [rarely 21, 24, 25]).

No	. Previous	New	Locality	Voucher	Sex Status	SVL	TaL
	identification	identification		number		(mm)	(mm)
1	T. albolabris	T. caudornatus	Yingjiang, Yunnan, China	ZMNH AR1238	M Holotype	573	122
2	T. septentrionalis	T. caudornatus	Indawgyi Lake, Myitkyina, Kachin, Myanmar	CAS 241264	М	436	110
3	T. albolabris	T. caudornatus	Putao, Kachin, Myanmar	CAS 221549	SM	333	72
4	T. albolabris	T. caudornatus	Putao, Kachin, Myanmar	CAS 224646	М	601	168
5	T. albolabris	T. caudornatus	Homalinn, Khandi, Sagaing, Myanmar	CAS 244953	М	507	141
6	T. albolabris	T. caudornatus	Bhamo, Kachin, Myanmar	MNHN	М	546	143
				1893.0415			
7	T. albolabris	T. caudornatus	Bhamo, Kachin, Myanmar	MSNG 30533-B	Μ	463	116
8	T. albolabris	T. caudornatus	Sumprabum, Kachin, Myanmar	NHMUK 1974.907	М	523	141
9	T. albolabris	T. caudornatus	Chatthin WS, Kanbalur, Sagaing, Myanmar	USNM 537444	М	425	114
10	T. albolabris	T. caudornatus	Longchuan, Yunnan, China	KIZ 74I0024	М	420	108
11	T. albolabris	T. caudornatus	Longchuan, Yunnan, China	KIZ 74I0032	SM	378	95
12	T. albolabris	T. caudornatus	Longchuan, Yunnan, China	KIZ 74I0033	SM	363	85
13	T. albolabris	T. caudornatus	Longchuan, Yunnan, China	KIZ 74I0045	М	425	120
14	T. albolabris	T. caudornatus	Longchuan, Yunnan, China	KIZ 74I0046	М	465	130
15	T. caudornatus	T. caudornatus	Yingjiang, Yunnan, China	ZMNH AR1239	F Paratype	425	77
16	T. yunnanensis	T. caudornatus	Hukaung WS, Myitkyina, Kachin, Myanmar	CAS 230260	SF	283	55
17	T. albolabris	T. caudornatus	Ta Ruing, Ta Nai, Myitkyina, Kachin,	CAS 232425	SF	297	59
			Myanmar				
18	T. septentrionalis	T. caudornatus	Shwe U Daung, Pyin Oo Lwin, Mandalay,	CAS 216144	SF	322	55
			Myanmar				
19	T. albolabris	T. caudornatus	Chipwe, Myitkyina, Kachin, Myanmar	CAS 245234	SF	279	50
20	T. albolabris	T. caudornatus	Madanbaw, Putao, Kachin, Myanmar	CAS 230233	F	534	98
21	T. albolabris	T. caudornatus	Bhamo, Kachin, Myanmar	MSNG 30533-A	F	702	74+
22	T. albolabris	T. caudornatus	Bhamo, Kachin, Myanmar	MSNG 2180	F	660	136
23	T. albolabris	T. caudornatus	Teizo, Kachin, Myanmar	MSNG 30814	SF	332	58
24	T. albolabris	T. caudornatus	Bhamo, Kachin, Myanmar	MNHN	F	625	130
25	<i></i>	T I I		1893.0416	P	(70)	122
25	1. albolabris	1. cauaornatus	N Changyang, Kachin, Myanmar	NHMUK 1974.906	F	6/9	133
26	T. albolabris	T. caudornatus	Chatthin WS, Kanbalur, Sagaing, Myanmar	USNM 524076	SF	329	58
27	T. albolabris	T. caudornatus	Longchuan, Yunnan, China	KIZ 74I0006	F	538	95
28	T. albolabris	T. caudornatus	Longchuan, Yunnan, China	KIZ 74I0010	F	470	75
29	T. albolabris	T. caudornatus	Longchuan, Yunnan, China	KIZ 74I0012	SF	310	69
30	T. albolabris	T. caudornatus	Longchuan, Yunnan, China	KIZ 74I0018	F	568	106
31	T. albolabris	T. caudornatus	Longchuan, Yunnan, China	KIZ 74I0027	F	474	83
32	T. albolabris	T. caudornatus	Longchuan, Yunnan, China	KIZ 74I0028	F	540	105
33	T. albolabris	T. caudornatus	Tengchong, Yunnan, China	KIZ 74110358	F	442	93
34	T. albolabris	T. cf. caudornatus	Jingdong, Yunnan, China	KIZ 75II0358	М	600	142
35	T. albolabris	T. cf. caudornatus	Yongde, Yunnan, China	KIZ 79I501	М	400	99
36	T. albolabris	T. cf. caudornatus	Kunming, Yunnan, China	KIZ 740005	F	?	?
37	T. albolabris	T. cf. caudornatus	Yongde, Yunnan, China	KIZ 79I207	F	500	92

TABLE 1. Main measurements and meris	tic characters of Trimeresurus	s caudornatus from China and Myanmar.
--------------------------------------	--------------------------------	---------------------------------------

TABLE 1. (Continue)

No.	New identification	Voucher number	Sex	DSR	VEN	SC	SL	IL	Source
1	T. caudornatus	ZMNH AR1238	М	21-21-15	163	72	10/10	13/12	Chen et al. (2020)
2	T. caudornatus	CAS 241264	М	21-21-15	162	66	10/10	12/11	This study
3	T. caudornatus	CAS 221549	SM	21-21-15	162	66	10/10	14/13	This study
4	T. caudornatus	CAS 224646	М	21-21-15	161	71	10/11	12/13	This study
5	T. caudornatus	CAS 244953	М	21-21-15	164	71	10/10	13/13	This study
6	T. caudornatus	MNHN 1893.0415	М	21-21-15	161	62	10/10	12/12	This study
7	T. caudornatus	MSNG 30533-B	М	23-19-15	165	69	11/10	11/12	This study
8	T. caudornatus	NHMUK 1974.907	М	23-21-17	158	67	12/11	12/11	This study
9	T. caudornatus	USNM 537444	М	23-21-15	166	53	11/11	13/14	This study
10	T. caudornatus	KIZ 74I0024	М	21-21-15	158	69	10/10	12/12	Zhao et al. (1998)
11	T. caudornatus	KIZ 74I0032	SM	19-21-15	160	69	11/10	13/13	Zhao et al. (1998)
12	T. caudornatus	KIZ 74I0033	SM	23-21-17	167	74	11/10	14/13	Zhao et al. (1998)
13	T. caudornatus	KIZ 74I0045	М	21-21-15	163	73	11/11	13/14	Zhao et al. (1998)
14	T. caudornatus	KIZ 74I0046	М	21-21-15	164	71	10/10	12/13	Zhao et al. (1998)
15	T. caudornatus	ZMNH AR1239	F	21-21-15	161	52	10/11	13/14	Chen et al. (2020)
16	T. caudornatus	CAS 230260	SF	19-21-15	158	61	11/11	13/12	This study
17	T. caudornatus	CAS 232425	SF	21-21-15	159	60	11/10	12/12	This study
18	T. caudornatus	CAS 216144	SF	21-21-15	169	55	10/9	13/13	This study
19	T. caudornatus	CAS 245234	SF	21-21-15	158	57	10/10	13/13	This study
20	T. caudornatus	CAS 230233	F	21-21-15	164.00	57.00	11/11	12/13	This study
21	T. caudornatus	MSNG 30533-A	F	23-21-17	173	?	11/10	11/12	This study
22	T. caudornatus	MSNG 2180	F	23-21-15	174	68	11/11	13/14	This study
23	T. caudornatus	MSNG 30814	SF	23-21-15	162	60	?	?	This study
24	T. caudornatus	MNHN 1893.0416	F	21-21-15	165	66	10/10	13/13	This study
25	T. caudornatus	NHMUK 1974.906	F	21-21-15	160	55	11/11	13/13	This study
26	T. caudornatus	USNM 524076	SF	21-21-15	160	53	11/11	12/12	This study
27	T. caudornatus	KIZ 74I0006	F	21-21-15	160	53	12/10	13/14	Zhao et al. (1998)
28	T. caudornatus	KIZ 74I0010	F	21-21-15	159	54	13/13	15/16	Zhao et al. (1998)
29	T. caudornatus	KIZ 74I0012	SF	21-21-15	161	57	11/11	13/14	Zhao et al. (1998)
30	T. caudornatus	KIZ 74I0018	F	21-21-15	168	55	10/10	13/12	Zhao et al. (1998)
31	T. caudornatus	KIZ 74I0027	F	21-21-15	161	?	11/12	12/13	Zhao et al. (1998)
32	T. caudornatus	KIZ 74I0028	F	21-21-15	164	61	11/11	12/12	Zhao et al. (1998)
33	T. caudornatus	KIZ 74110358	F	21-21-15	159	52	11/11	13/13	Zhao et al. (1998)
34	T. cf. caudornatus	KIZ 75110358	М	21-21-15	163	67	10/10	12/14	Zhao et al. (1998)
35	T. cf. caudornatus	KIZ 79I501	М	22-21-15	161	69	10/9	13/13	Zhao et al. (1998)
36	T. cf. caudornatus	KIZ 740005	F	21-21-15	155	54	10/11	14/15	Zhao et al. (1998)
37	T. cf. caudornatus	KIZ 79I207	F	22-21-15	162	57	10/11	13/14	Zhao et al. (1998)

Trimeresurus caudornatus differs from *T. guoi* Chen, Shi, Vogel & Ding by having a golden yellow eye color (vs. always firebrick-red); tip of hemipenes reaching SC 37–38 (vs. 23–32).

Trimeresurus caudornatus differs from *T. septentrionalis*, a species now restricted to Nepal and north-western India, by having a lower number of subcaudals in males $(53-74, 68.07 \pm 5.38 \text{ vs. } 71-80, 76.67 \pm 3.50)$ and females $(52-68, 57.41 \pm 4.69 \text{ vs. } 56-66, 63.07 \pm 2.53)$, and tip of hemipenes reaching SC 37-38 (vs. 5-7).

FIGURE 3. The head of preserved *Trimeresurus caudornatus* from Myanmar in lateral right and lateral left views: (A–B) specimen CAS 224646, adult male, and (C–D) specimen MSNG 30533-B, adult male, from Myitkyina and Bhamo, Kachin, respectively; (E–F) specimen CAS 216144, subadult female, from Pyin Oo Lwin, Mandalay; (G–H) specimen NHMUK 1974.907, adult female, from Sumprabum, Kachin. Photos by G. Vogel (A, B, E–H) and J. Lee (C–D).

FIGURE 4. *Trimeresurus caudornatus* in preservative: specimen CAS 241264 (subadult male) from Myitkyina, Kachin, Myanmar. (A–B) Dorsolateral and ventral views of body, respectively; (C–F) head in lateral right, lateral left, dorsal, and ventral aspects, respectively; (G–H): Ventral view of the tail with the everted hemipenes. Photos by G. Vogel.

Trimeresurus caudornatus differs from *T. uetzi*, a species recently described from central and southern Myanmar, also present in Northeast India, by having the tip of the hemipenes reaching the 37th–38th SC (vs. 6th–8th SC); postocular stripe absent in males (vs. present); ventrolateral body stripe faint, greenish-yellow, poorly contrasted

(vs. present, white, conspicuous); in life, iris golden yellow in male (vs. copper in male); and the presence of an irregular, red-orange stripe in the middle of the ventral surface (vs. no median stripe on the lower surface of the tail) (see Appendix Table S7).

Description based on examined specimens from Myanmar (n=19).

Morphology. Body moderately elongate, slender [the longest known specimen is 776+ mm long, (SVL 702 mm, TaL 74+ mm, female; MSNG 30533-A, incomplete tail); the longest known male is 769 mm long (SVL 601 mm, TaL 168 mm; CAS 224646); tail typically cylindrical in cross section, fairly short, prehensile, tapering (TaL/TL 0.17–0.22 in males (n=9) and 0.15–0.17 in females (n=8)). Head triangular and elongate, flattened, clearly distinct from neck. Snout moderate, overall flattened from top and side view, rounded from top view, truncate when seen from lateral side, canthus rostralis distinct, eye moderate.

Body scalation. DSR 21 (rarely 23)–21 (rarely 19)–15 scales, rhomboid, moderately keeled except for the first row which is smooth; VEN 158–166 in males (n=9), 158–174 in females (n=9); SC 53–71 in males (n=9), 55–66 in females (n=8), paired; single cloacal plate.

Head scalation. Rostral subtriangular, slightly visible when viewed from above; nasal large, sub-rectangular, undivided, half-separated from the first upper labial by a suture behind the nostril; one pair of enlarged internasals, in good contact with each other, slightly broader than long; second and third supralabial and three preoculars encompass the loreal pit; the lower preocular forms the lower margin of the loreal pit; one elongate and narrow supraocular; cephalic scales small, irregular, subimbricate, smooth; occipital scales smooth; temporals feebly keeled and subequal; subocular crescent shaped; 9–13 supralabials; SL1 not fused with nasal scale, 2nd much higher than 1st, 3rd SL largest, longest of all, about twice as long as 2nd SL, longer than high, in contact with the subocular, 4th SL distinctly shorter, more than 2/3 time as high as 3rd one, 5th and other posterior SL slightly smaller than 4th; both 4th and 5th SL separated from the subocular by one scale row, others in contact with the first lowest row of temporals; 11–16 infralabials, the first pair in contact medially; separated from infralabials by 1–6 scale rows.

Coloration in life (Fig. 5): Dorsal body dark green. Lateral body green above and gradually pale green yellow below. Ventral body greenish yellow, paler in anterior part, light green in posterior part. Dorsal part of the tail dark red, about 2 dorsal scale rows wide and not mottled. Lateral and ventral part of the tail green. Ventrally, a thin orange red stripe extends across the posterior third of the tail. Tail tip uniformly red. Iris golden yellow (based on DTU 651–653 from Yunnan Province, China as well as Mandalay Region, Myanmar, all unknown sex).

Coloration in preservative (see Figs. 3–4): Dorsal body black gray or light blue without ventrolateral body stripes. Ventral body uniformly cream. The head dorsally back gray or light blue; without postocular streak, but a clear boundary below the eyes, olive above and grass green below. The chin and throat are white (based on CAS 241264 [male] and CAS 216144 [female], respectively).

Distribution (Fig. 1). *Trimeresurus caudornatus* was previously known only from Nabang Town, Yingjiang County, Yunnan Province, China (Chen *et al.* 2020). We here add a second and third Chinese locality from Yunnan Province: Tongbiguan Township, Yingjiang County, Longchuan, Tengchong countys and Chuxiong City (see the Discussion). The new location in Chuxiong City is ca. 390 airline kilometers east of the type locality. We also present several records of this species from Myanmar. *T. caudornatus* is currently known from the Mandalay and Sagaing regions, and from Kachin State. Given its geographic proximity, it likely occurs in Shan State as well. Detailed localities within each first-level regions of Myanmar are presented in Appendix Table S8.

Natural history notes. Prior to this study, the biological data of *Trimeresurus caudornatus* were very limited; it was only reported from an altitude of 389 m a.s.l. at the type locality (Chen *et al.* 2020). According to metadata associated with specimens deposited in the California Academy of Sciences collections (accessible at https:// researcharchive.calacademy.org/research/herpetology/catalog/Index.asp), specimens of *T. caudornatus* were collected between 16h09 to 22h30 local time on trees, shrubs, or branches. The air temperature when specimens were observed varied from 24.7°C to 30°C and the relative humidity from 69–92%. This species seems to be distributed at low and medium elevations ranging from 169 to 560 m a.s.l. The stomach of CAS 221549 contained a skink *Sphenomorphus indicus* (Gray). An adult male specimen CAS 224646 was inactive ca. 25 cm below ground level inside a termite mound located near a trail in an agricultural area next to a subtropical evergreen forest (see Wogan & Win 2005).

FIGURE 5. Adult *Trimeresurus caudornatus* alive (all uncollected and sex unknown). (A–C) from Chuxiong, Yunnan, China (digital image DTU 652); (D) from Pingyuan, Yingjiang, Dehong, Yunnan, China (digital image DTU 651); (E) from Mandalay, Mandalay, Myanmar (digital image DTU 653). Photos by: Fan Gao (A–C), Spark Thomas (D), and Kyaw Zin Htet (E).

Conservation status. *Trimeresurus caudornatus* is reliably known from 14 localities, including one national park and three wildlife sanctuaries in northern Myanmar. Outside of these protected regions, we predict habitat loss, habitat degradiation and killing/persecution by humans may act as conservation threats for this species. The actual extent of distribution, population trends, reproductive behavior, ecology, toxicology of this species remain poorly known. For now, based on its much more extensive distribution covering multiple protected areas in two countries, we suggest *Trimeresurus caudornatus* be considered as Least Concern (LC) following the criteria provided in the IUCN's Red List categories (IUCN 2024).

Discussion

In this study, we re-examined specimens that were previously assigned to Trimeresurus albolabris sensu lato or Trimeresurus septentrionalis sensu lato from northern Myanmar (Kachin State, Mandalay and Sagaing regions) and found that all of them should be assigned to the recently described Trimeresurus caudornatus. These also include records of T. albolabris and T. septentrionalis reported from northern Myanmar by Wall (1925; 1926), Smith (1943), Regenass & Kramer (1981), David & Tong (1997), Orlov et al. (2002), Leviton et al. (2003, 2008), Gumprecht et al. (2004), Vogel (2006), and Zhu et al. (2016). Presently T. albolabris s. str., should be restricted to southeastern China and adjacent Indochina (Laos (centre and south), Cambodia (throughout), Vietnam (throughout except the northwest), and Thailand (eastern and central) whereas T. septentrionalis s. str. should be restricted to the western Himalayan regions of Nepal and India (Vogel et al. 2022, 2023). As previously mentioned, historical records of Trimeresurus from central Myanmar and adjacent parts of northeastern India (Mizoram State) were recently described/re-classified as T. uetzi (David et al. 2023; Biakzuala et al. 2024). Morphologically, the presence of a red or orange midventral stripe on the underside of the tail and the lack of conspicuous white ventrolateral and postocular striping appear to be consistent across Trimeresurus caudornatus in both sexes. These two traits remain the easiest methods of identification for this species, especially relative to its geographically proximate congeners Trimeresurus salazar and T. uetzi. Some female Trimeresurus uetzi also have inconspicuous ventrolateral and postocular striping, but the absence of the red midventral stripe in that species should act to distinguish it from T. caudornatus if the former characters overlap.

Previous accounts (Zhao et al. 1998; Yang & Rao 2008; Zhu et al. 2022) reported that the species Trimeresurus albolabris is widely distributed in the northwestern region of Yunnan Province, China such as Longchuan County in Dehong City, Tuantian Town in Tengchong City. However, according to the morphological data of specimens from these two localities (Table 1), they belong to Trimeresurus caudornatus, rather than T. albolabris. Other populations in northwestern Yunnan Province with similar morphological characteristics as T. caudornatus (such as those reported from Yongde and Shuangjiang counties in Lincang City, Jingdong County in Puer City, and Kunming City, see Table 1) should also be re-examined for verification, and molecular data. These specimens, which were mentioned by Zhao et al. (1998), are included in the referred material of T. caudornatus, but are not included in our redescription until further confirmation. In addition, Li et al. (2020) followed by Wu et al. (2023), recorded Trimeresurus albolabris from Tongbiguan Township, Yingjiang County, Yunnan Province, China based on specimen SYS r001228 (or CHS 661) under Genbank numbers MK194130 (16S) and MK064805 (COI) as a lineage distinct from Trimeresurus albolabris s. str. and T. guoi. As these specimens were sequenced for separate mitochondrial genes, we did not include them in our genetic analyses. Nevertheless, the location of the specimen (Tongbiguan, Yingjiang County) is very close to the type locality of Trimeresurus caudornatus (approximately 28 km). We suspect that SYS r001228 is referrable to Trimeresurus caudornatus, but a re-examination of the specimen is required to verify this.

In addition, our molecular results support the existence of two clades that were originally identified as Trimeresurus albolabris: the first from Peninsular Thailand, and the second from Mengzi City, Yunnan Province, China. Both clades were recovered separately from the respective clades of T. albolabris sensu stricto and topotypic T. guoi. The first clade of Trimeresurus albolabris (from Peninsular Thailand) was also recovered in a more comprehensive phylogeny by Zhu et al. (2016), there labeled as Clade B, sister to their remaining samples of T. albolabris (Clade A in their study all correspond to samples of T. guoi). In contrast, samples of the second clade (from Mengzi City, Yunnan Province, China) were published a year earlier (Guo et al. 2015) and were not included in Zhu et al. (2016); however, their geographic location is certainly within the range of Trimeresurus guoi. Based on the position of each clade in our phylogeny, we tentatively identify these populations as Trimeresurus cf. albolabris and Trimeresurus cf. guoi, respectively. Both clades exhibit moderate genetic distances that are somewhat higher than the intraspecific distances of species such as Trimeresurus albolabris (see Appendix Table S4) and may represent cryptic species. However, the phylogenetic positions of both clades could be due to poor genetic coverage, as our molecular dataset only included a single genetic marker and do not replicate the topological results of Zhu et al. (2016), which place samples of Trimeresurus guoi sister to the clade containing T. cf. albolabris in this study. We await a more comprehensive genetic and morphological assessment of the Thai and southern Yunnan populations of Trimeresurus before making any further taxonomic decisions.

Acknowledgements

We are deeply grateful to Spark Thomas (China), Fan Gao (Nanjing University, China) and Kyaw Zin Htet (Native Species Conservation & Identification, Myanmar) for providing information and photos of *Trimeresurus caudornatus* in Myanmar and China. We also warmly thank Ngoc Quynh Nguyen and Thinh Gia Tran (SIFASV, Vietnam) for help in the preparation of the figures and map. We thank Patrick Campbell (NHMUK), Jens Vindum, Lauren Scheinberg, Erica Ely, Alan Leviton (CAS), Andreas Schmitz (MHNG), Alain Dubois and Annemarie Ohler (MNHN), Giuliano Doria and Massimo Petri (MSNG), Silke Schweiger, Richard Gemel and Georg Gassner (NHMW), Pim Arntzen and Esther Dondorp (RMNH), Esther Langan, Addison Wynn, George R. Zug (USNM), Mark-Oliver Rödel and Frank Tillack (ZMB), and Jakob Hallermann (ZMH) for permission to examine specimens from their collections. We thank Olivier S. G. Pauwels (RBINS, Belgium), Sumaithangi R. Ganesh (Tamil Nadu, India), and Karin Tamar (SMNH, Israel) for kindly reviewing a previous version of the manuscript. This research is supported in part by the Rufford Foundation (Grant No. 39897-1: data analysis) and the Russian Science Foundation (RSF grant No. 22-14-00037: data analysis).

References

- Biakzuala, L., Muansanga, L., Malsawmdawngliana, F., Hmar, L. & Lalremsanga, H.T. (2024) New country record of *Trimeresurus uetzi* Vogel, Nguyen & David, 2023 (Reptlia: Squamata: Viperidae) from India. *Journal of Threatened Taxa*, 16 (5), 25268–25272.
- https://doi.org/10.11609/jott.8910.16.5.25268-25272
- Captain, A., Deepak, V., Pandit, R., Bhatt, B. & Athreya, R. (2019) A new species of pitviper (Serpentes: Viperidae: *Trimeresurus* Lacepède, 1804) from west Kameng District, Arunachal Pradesh, India. *Russian Journal of Herpetology*, 26, 111–122. https://doi.org/10.30906/1026-2296-2019-26-2-111-122
- Chan, K.O., Sind, L.I., Thong, L.L., Ananthanarayanan. S., Rasu, S., Aowphol, A., Rujirawan, A., Anuar, S., Mulcahy, D., Grismer, J.L. & Grismer, L.L. (2022) Phylogeography of mangrove pit vipers (Viperidae, *Trimeresurus erythruruspurpureomaculatus* complex). *Zoologica Scripta*, 51 (6), 664–675. https://doi.org/10.1111/zsc.12562
- Chen, Z., Zhang, L., Shi, J., Tang, Y., Guo. Y., Song, Z. & Ding, L. (2019) A new species of the genus *Trimeresurus* from southwest China (Squamata: Viperidae). *Asian Herpetological Research*, 10, 13–23. https://doi.org/10.16373/j.cnki.ahr.180062
- Chen, Z.N., Shi, S., Gao, J., Vogel, G., Song, Z., Ding, L. & Dai, R. (2021) A new species of *Trimeresurus* Lacépède, 1804 (Squamata: Viperidae) from Southwestern China, Vietnam, Thailand and Myanmar. *Asian Herpetological Research*, 12 (2), 167–177.

https://doi.org/10.16373/j.cnki.ahr.200084

- Chen, Z.N., Yu, J.P., Vogel, G., Shi, S., Song, Z., Tang, Y., Yang, J., Ding, L. & Chen, C. (2020) A new pit viper of the genus *Trimeresurus* (Lacépède, 1804) (Squamata: Viperidae) from Southwest China. *Zootaxa*, 4768 (1), 112–128. https://doi.org/10.11646/zootaxa.4768.1.7
- Creer, S., Malhotra, A. & Thorpe, R.S. (2003) Assessing the phylogenetic utility of four mitochondrial genes and a nuclear intron in the Asian pit viper genus, *Trimeresurus*: Separate, Simultaneous, Conditional Data Combination Analyses. *Molecular Biology and Evolution*, 20, 1240–1251.

https://doi.org/10.1093/molbev/msg136

David, P. & Tong, H. (1997) Translations of recent descriptions of Chinese pitvipers of the *Trimeresurus*-complex (Serpentes, Viperidae), with a key to the complex in China and adjacent areas. *Smithsonian Herpetological Information Service*, 112, 1–31.

https://doi.org/10.5479/si.23317515.112.1

- David, P. & Vogel, G. (1998) Redescription of *Trimeresurus huttoni* Smith, 1949 (Serpentes, Crotalinae), with a discussion of its relationships. *Hamadryad*, 22 (2), 73–87.
- David, P., Vidal, N. & Pauwels, O.S.G. (2001) A morphological study of Stejneger's pitviper *Trimeresurus stejnegeri* (Serpentes, Viperidae, Crotalinae) with the description of a new species from Thailand. *Russian Journal of Herpetology*, 8 (3), 205–222.
- David, P., Vogel, G. & Vidal, N. (2003) On *Trimeresurus fasciatus* (Boulenger, 1896) (Serpentes: Crotalidae), with a discussion on its relationships based on morphological and molecular data. *Raffles Bulletin of Zoology*, 51 (2), 149–157.
- David, P., Vogel. G., Vijayakumar, S.P. & Vidal, N. (2006) A revision of the *Trimeresurus puniceus*-complex (Serpentes, Viperidae, Crotalinae) based on morphological and molecular data. *Zootaxa*, 1293 (1), 1–78. https://doi.org/10.11646/zootaxa.1293.1.1
- Dawson, K., Malhotra, A., Thorpe, R.S., Guo P, Mrinalini. & Ziegler, T. (2008) Mitochondrial DNA analysis reveals a new member of the Asian pitviper genus *Viridovipera* (Serpentes: Viperidae: Crotalinae). *Molecular Phylogenetics and*

Evolution, 49, 356–361.

https://doi.org/10.1016/j.ympev.2008.05.044

Dowling, H.G. (1951) A proposed method of expressing scale reductions in Snakes. Copeia, 1951, 131.

Figueroa, A., McKelvy, A.D., Grismer, L.L., Bell, C.D. & Lailvaux, S.P. (2016) A species-level phylogeny of extant snakes with description of a new colubrid subfamily and genus. *PlosOne*, 11, e0161070. https://doi.org/10.1371/journal.pone.0161070

Gumprecht, A., Tillack, F., Orlov, N., Captain, A. & Ryabov, S. (2004) Asian Pit vipers. Geitje Books, Berlin, 368 pp.

- Guo, P. & Wang, Y.Z. (2011) A new genus and species of cryptic Asian green pitviper (Serpentes: Viperidae: Crotalinae) from southwest China. *Zootaxa*, 2918 (1), 1–14. https://doi.org/10.11646/zootaxa.2918.1.1
- Guo, P., Liu, Q., Zhong, G., Zhu, F., Yan, F., Tang, T., Xiao, R., Fang, M., Wang, P. & Fu, X. (2015) Cryptic diversity of green pitvipers in Yunnan, South-west China (Squamata, Viperidae). *Amphibia-Reptilia*, 36 (3), 265–276. https://doi.org/10.1163/15685381-00003004
- Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. *Nucleic acids symposium series*, 41, 95–98.
- Huelsenbeck, J.P. & Hillis, D.M. (1993) Success of phylogenetic methods in the four-taxon case. *Systematic Biology*, 42, 247–264.

https://doi.org/10.1093/sysbio/42.3.247

- Huelsenbeck, J.P. & Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogenetic trees. *Bioinformatics*, 17, 754–755. https://doi.org/10.1093/bioinformatics/17.8.754
- Idiiatullina, S.S., Pawangkhanant, P., Tawan, T., Worranuch, T., Dechochai, B., Suwannapoom, C., Nguyen, T.V., Chanhome, L. & Poyarkov, N.A. (2023) Limestone jewel: A new colourful karst-dwelling pitviper (Serpentes: Viperidae: *Trimeresurus*) from the poorly explored borderlands of southern peninsular Thailand. *Vertebrate Zoology*, 73, 697–716. https://doi.org/10.3897/vz.73.e109854
- Idiiatullina, S.S., Nguyen, T.V., Pawangkhanan, P., Suwannapoom, C., Chanhome, L., Mirza, Z.A., David, P., Vogel, G. & Poyarkov, N.A. (2024a) An integrative taxonomic revision of the *Trimeresurus popeiorum* species complex (Reptilia: Serpentes: Viperidae), with descriptions of two new species from the Indo-Burma biodiversity hotspot. *Vertebrate Zoology*, 74, 303–342.

https://doi.org/10.3897/vz.74.e113347

- Idiiatullina, S.S., Pawangkhanant, P., Suwannapoom, C., Tawan, T., Chanhome, L., Nguyen, T.V., David, P., Vogel, G. & Poyarkov, N.A. (2024b) Another new species of karst-associated pitviper (Serpentes, Viperidae: *Trimeresurus*) from the Isthmus of Kra, Peninsular Thailand. *European Journal of Taxonomy*, 930, 20–52. https://doi.org/10.5852/ejt.2024.930.2489
- Idiiatullina, S.S., Nguyen, T.V., Bragin, A.M., Pawangkhanant, P., Le, D.X., Vogel, G., David, P. & Poyarkov, N.A. (2024c) A new species of green pitviper of the *Trimeresurus macrops* complex (Reptilia: Serpentes: Viperidae) from South Central Coast Region of Vietnam. *Zootaxa*, 5474 (4), 375–411. https://doi.org/10.11646/zootaxa.5474.4.3
- IUCN Standards and Petitions Committee 2024: Guidelines for using the IUCN red list categories and criteria. Ver. 16. Prepared by the standards and petitions committee. The IUCN Red List of Threatened Species. Available from: https://www. iucnredlist.org/documents/RedList-Guidelines.pdf (accessed 1 January 2024)
- Katoh, K., Rozewicki, J. & Yamada, K.D. (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. *Briefings in Bioinformatics*, 20, 1160–1166. https://doi.org/10.1093/bib/bbx108
- Kramer, E. (1977) Zur Schlangenfauna Nepals. Revue suisse de Zoologie, 84 (3), 721–761. [in German]
- Lanfear, R., Calcott, B., Ho, S.Y.W. & Guindon, S. (2012) PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic *analyses*. *Molecular Biology and Evolution*, 29, 1695–1701. https://doi.org/10.1093/molbev/mss020
- Leviton, A.E., Wogan, G.O.U., Koo, M.S., Zug, G.R., Lucas, R.S. & Vindum, J.V. (2003) The dangerously venomous snakes of Myanmar: illustrated checklist with keys. *Proceedings of the California Academy of Sciences*, 54 (24), 407–462.
- Leviton, A.E., Zug, G.R., Vindum, J.V. & Wogan, G.O.U. (2008) *Handbook to the dangerously venomous snakes of Myanmar*. California Academy of Science, San Francisco, 121 pp.
- Li, J.N., Liang, D., Wang, Y.Y., Huang, S. & Zhang, P. (2020) A large scale systematic framework of Chinese snakes based on a unified multilocus marker system. *Molecular Phylogenetics and Evolution*, 148, 106807. https://doi.org/10.1016/j.ympev.2020.106807
- Malhotra, A. & Thorpe, R.S. (2000) A phylogeny of the *Trimeresurus* group of pitvipers: new evidence from a mitochondrial gene tree. *Molecular Phylogenetics and Evolution*, 16, 199–211. https://doi.org/10.1006/mpev.2000.0779
- Malhotra, A. & Thorpe, R.S. (2004) A phylogeny of four mitochondrial gene regions suggests a revised taxonomy for Asian pit vipers (*Trimeresurus* and *Ovophis*). *Molecular Phylogenetics and Evolution*, 32 (1), 83–100. https://doi.org/10.1016/j.ympev.2004.02.008
- Malhotra, A., Creer, S., Pook, C.E. & Thorpe, R.S. (2010) Inclusion of nuclear intron sequence data helps to identify the Asian

sister group of New World pitvipers. *Molecular Phylogenetics and Evolution*, 54 (1), 172–178. https://doi.org/10.1016/j.ympev.2009.007

- Malhotra, A., Thorpe, R.S., Mrinalini & Stuart, B.L. (2011) Two new species of pitviper of the genus *Cryptelytrops* Cope 1860 (Squamata: Viperidae: Crotalinae) from Southeast Asia. *Zootaxa*, 2757 (1), 1–23. https://doi.org/10.11646/zootaxa.2757.1.1
- Mallik, A.K., Srikanthan, A.N., Ganesh, S.R., Vijayakumar, S.P., Campbell, P.D., Malhotra, A. & Shanker, K. (2021) Resolving pitfalls in pit viper systematics – A multi-criteria approach to species delimitation in pit vipers (Reptilia, Viperidae, *Craspedocephalus*) of Peninsular India reveals cryptic diversity. *Vertebrate Zoology*, 71, 577–619. https://doi.org/10.3897/vz.71.e66239/
- Mirza, Z.A., Bhosale, H.S., Phansalkar, P.U., Sawant, M., Gowande, G.G. & Patel, H. (2020) A new species of green pit vipers of the genus *Trimeresurus* Lacépède, 1804 (Reptilia, Serpentes, Viperidae) from western Arunachal Pradesh, India. *Zoosystematics and Evolution*, 96, 123–138. https://doi.org/10.3897/zse.96.48431
- Mirza, Z.A., Lalremsanga, H.T., Bhosale, H., Gowande, G., Patel, H., Idiatullina, S.S. & Poyarkov, N.A. (2023) Systematics of *Trimeresurus popeiorum* Smith, 1937 with a revised molecular phylogeny of Asian pitvipers of the genus *Trimeresurus* Lacépède, 1804 sensu lato. *Evolutionary Systematics*, 7, 91–104. https://doi.org/10.3897/evolsyst.7.97026
- Mulcahy, D.G., Lee, J.L., Miller, A.H. & Zug G.R. (2017) Troublesome trimes, Potential cryptic speciation of the *Trimeresurus* (*Popeia*) popeiorum complex (Serpentes, Crotalidae) around the Isthmus of Kra (Myanmar and Thailand). *Zootaxa*, 4347 (2), 301–315.

https://doi.org/10.11646/zootaxa.4347.2.6

- Orlov, N., Ananjeva, N., Barabanov, A., Ryabov, S. & Khalikov, R. (2002) Diversity of vipers (Azemiopinae, Crotalinae) in East, Southeast, South Asia: Annotated checklist and natural history data (Reptilia: Squamata: Serpentes: Viperidae). *In*: Fritz, U. (Ed.), Collectanea Herpetologica. Essays in honour of Fritz Jürgen Obst. *Faunistische Abhandlungen Staatliches Museum für Tierkunde Dresden*, 23 (10), pp. 177–218.
- Parkinson, C.L., Campbell, J.A. & Chippindale, P.T. (2002) Multigene phylogenetic analyses of pitviper relationships, with comments on their biogeography. In: Schuett, G.W., Höggren, M. & Greene, H.W. (Eds.), Biology of the Vipers. Chapter: Multigene phylogenetic analyses of pitviper relationships, with comments on their biogeography. Biological Sciences Press, Traverse City, Michigan, pp. 93–110.
- Poyarkov, N.A., Nguyen, T.V., Popov, E.S., Geissler, P., Pawangkhanant, P., Neang, T., Suwannapoom, C. & Orlov, N.L. (2023) Recent progress in taxonomic studies, biogeographic analysis and revised checklist of Reptilians in Indochina. *Russian Journal of Herpetology*, 28 (3A), 1–110.

https://doi.org/10.30906/1026-2296-2021-28-3A-1-110

- Pyron, R.A., Kandambi, H.K.D., Hendry, C.R., Pushpamal, V., Burbrink, F.T., Somaweera, R. (2013) Genus-level phylogeny of snakes reveals the origins of species richness in Sri Lanka. *Molecular Phylogenetics and Evolution*, 66, 969–978. https://doi.org/10.1016/j.ympev.2012.12.004
- Rambaut, A., Drummond, A.J., Xie, D., Baele, G. & Suchard, M.A. (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. *Systematic Biology*, 67, 901–904. https://doi.org/10.1093/sysbio/syy032
- Rathee, Y.S., Purkayastha, J., Dalal, S. & Lalremsanga, H.T. (2021) First record of Salazar's Pitviper (*Trimeresurus salazar*) from Meghalaya, India, with comments on hemipenes. *Reptiles & Amphibians*, 28 (1), 131–136. https://doi.org/10.17161/randa.v28i1.15369
- Rathee, Y.S., Purkayastha, J., Lalremsanga, H.T., Dalal, S., Biakzuala, L., Muansanga, L. & Mirza, Z.A. (2022) A new cryptic species of green pit viper of the genus *Trimeresurus* Lacépède, 1804 (Serpentes, Viperidae) from northeast India. *PLoS* ONE, 17, e0268402.

https://doi.org/10.1371/journal.pone.0268402

- Regenass, U. & Kramer, E. (1981) Zur Systematik der grünen Grubenottern der Gattung *Trimeresurus* (Serpentes, Crotalidae). *Revue suisse de Zoologie*, 88 (1), 163–205. [in German] https://doi.org/10.5962/bhl.part.82363
- Sanders, K.L., Malhotra, A. & Thorpe, R.S. (2004) Ecological diversification in a group of Indomalayan pitvipers (*Trimeresurus*): convergence in taxonomically important traits has implications for species identification. *Journal of Evolutionary Biology*, 17, 721–731.

https://doi.org/10.1111/j.1420-9101.2004.00735.x

- Sanders, K.L., Malhotra, A. & Thorpe, R.S. (2006) Evidence for a Müllerian mimetic radiation in Asian pitvipers. *Proceedings of the Royal Society B: Biological Sciences*, 273 (1590), 1135–1141. https://doi.org/10.1098/rspb.2005.3418
- Smith, M.A. (1940) The amphibians and reptiles obtained by Mr. Ronald Kaulback in Upper Burma, *Records of the Indian Museum*, 42, 465–486.

https://doi.org/10.26515/rzsi/v42/i3/1940/162431

Smith, M.A. (1943) *The fauna of British India Ceylon and Burma, including the whole of the Indo-Chinese Sub-region. Reptilia and Amphibia. Vol. III. Serpentes.* Taylor and Francis, London, xii + 583 pp.

- Stuart, B., Neang, T., Nguyen, T.Q. & Auliya M. (2012) Cryptelytrops albolabris. The IUCN Red List of Threatened Species, 2012, e.T178433A1534017.
- Sumontha, M., Suntrarachun, S., Pauwels, O.S.G., Pawangkhanant, P., Chomngam, N., Iamwiriyakul, P. & Chanhome, L. (2021) A new karst-dwelling, colorful pitviper (Viperidae: *Trimeresurus*) from northern Peninsular Thailand. *Zootaxa*, 4974 (2), 307–332.

https://doi.org/10.11646/zootaxa.4974.2.4

- Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. (2013) MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. *Molecular Biology and Evolution*, 30, 2725–2729. https://doi.org/10.1093/molbev/mst197
- Trifinopoulos, J., Nguyen, L.T., Von Haeseler, A. & Minh, B.Q. (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. *Nucleic acids research*, 44 (W1), W232–235. https://doi.org/10.1093/nar/gkw256
- Uetz, P., Freed, P. & Aguilar, R. (2024) The Reptile Database. Available from: http://www.reptile-database.org/ (accessed 1 January 2024)
- Vogel, G. (2006) Venomous snakes of Asia Giftschlangen Asiens. Edition Chimaira, Frankfurt am Main & Aqualog Verlag ACS, Rodgau (Germany). Terralog, 14, 1–148.
- Vogel, G., Mallik, A.K., Chandramouli, S.R., Sharma, V. & Ganesh, S.R. (2022) A review of records of the *Trimeresurus albolabris* Gray, 1842 group from the Indian Subcontinent: expanded description and range extension of *Trimeresurus salazar*, redescription of *Trimeresurus septentrionalis* and rediscovery of historical specimens of *Trimeresurus davidi* (Reptilia: Viperidae). *Zootaxa*, 5175 (3), 343–366. https://doi.org/10.11646/zootaxa.5175.3.2
- Vogel, G., Nguyen, T.V. & David, P. (2023) A new green pitviper of the complex of *Trimeresurus albolabris* (Reptilia, Serpentes, Viperidae) from central and southern Myanmar. *Zootaxa*, 5357 (4), 515–554. https://doi.org/10.11646/zootaxa.5357.4.3
- Wall, F. (1925) Notes on snakes collected in Burma in 1924. The Journal of the Bombay Natural History Society, 30 (4), 805-821.
- Wall, F. (1926) Snakes collected in Burma in 1925. The Journal of the Bombay Natural History Society, 31 (3), 558-566.
- Wallach, V., Williams, K.L. & Boundy, J. (2014) Snakes of the World. A Catalogue of Living and Extinct Species. CRC Press, Boca Raton, Florida, xxvii + 1209 pp.
- Wogan, G.O.U. & Win, H. (2005) Natural history notes: *Trimeresurus albolabris* (White-lipped Pitviper). Resting site. *Herpetological Review*, 36 (1), 72.
- Wostl, E., Sidik, I., Trilaksono, W., Shaney K.J., Kurniawan, N. & Smith, E.N. (2016) Taxonomic status of the Sumatran Pitviper *Trimeresurus (Popeia) toba* David, Petri, Vogel & Doria, 2009 (Squamata: Viperidae) and other Sunda Shelf species of the subgenus *Popeia. Journal of Herpetology*, 50 (4), 633–641. https://doi.org/10.1670/15-045
- Wu, Y.H., Hou, S.B., Yuan, Z.Y., Jiang, K., Huang, R.Y., Wang, K., Liu, Q., Yu, Z.B., Zhao, H.P., Zhang, B.L., Chen, J.M., Wang, L.J., Stuart, B.L., Chambers, E.A., Wang, Y.F., Gao, W., Zou, D.H., Yan, F., Zhao, G.G., Fu, Z.X., Wang, S.N., Jiang, M., Zhang, L., Ren, J.L., Wu, Y.Y., Zhang, L.Y., Yang, D.C., Jin, J.Q., Yin, T.T., Li, J.T., Zhao, W.G., Murphy, R.W., Huang, S., Guo, P., Zhang, Y.P. & Che, J. (2023) DNA barcoding of Chinese snakes reveals hidden diversity and conservation needs. *Molecular Ecology Resources*, 23 (5), 1124–1141. https://doi.org/10.1111/1755-0998.13784
- Yang, D. & Rao, D.Q. (2008) Amphibia and Reptilia of Yunnan. Yunnan Publishing Group Corporation, Yunnan Science, Kunming, 411 pp. [in Chinese]
- Zhao, E.M., Huang, M.H. & Zong, Y. (1998) Fauna Sinica: Reptilia, Volume 3. Squamata, Serpentes. Science Press, Beijing, 570 pp.
- Zhu, F., Chen, L., Guo, P., Xu, Y. & Liu, Q. (2022) Sexual dimorphism and geographic variation of the White-lipped pit viper (*Trimeresurus albolabris*) in China. *Current Herpetology*, 41 (1), 24–34. https://doi.org/10.5358/hsi.41.24
- Zhu, F., Liu, Q., Che, J., Zhang, L., Chen, X., Yan, F., Murphy, R., Guo, C. & Guo, P. (2016) Molecular phylogeography of white-lipped tree viper (*Trimeresurus*; Viperidae). *Zoologica Scripta*, 45, 252–262. https://doi.org/10.1111/zsc.12156

Ap	pendix Table S1.	Comparative materia	ls examined of Trimere,	surus albolabris and T. se	eptentrionalis species groups.
----	------------------	---------------------	-------------------------	----------------------------	--------------------------------

No.	Species	Collection number	Country	Locality	Sex	Status
1	T. albolabris	NHMUK 1946.1.19.85	China	Hong Kong	М	Lectotype
2	T. albolabris	MNHG 1400.69	China	Guangdong	М	
3	T. albolabris	NHMW 23927	China	Koksingas Port	М	
4	T. albolabris	NHMW 23926.5	China	Hong Kong	М	
5	T. albolabris	ZMB 66283	China	Guangdong	М	
6	T. albolabris	ZMB 52600	China	Nam Fung Wan, Hong Kong	М	
7	T. albolabris	NHMW 23905.2	China	Tingan, Hainan	М	
8	T. albolabris	NHMW 23905.8	China	Wuzhi Mt., Hainam	М	
9	T. albolabris	ZFMK 86454	Vietnam	Phong Nha Ke Bang, Quang Binh	М	
10	T. albolabris	ZFMK 101038	Vietnam	Bach Long Vy, Hai Phong	М	
11	T. albolabris	NHMUK 1946.1.23.73	China	Hong Kong	F	Paralectotype
12	T. albolabris	MNHG 1464.88	China	Guangdong	F	
13	T. albolabris	NHMW 23905.3	China	Tingan, Hainan	F	
14	T. albolabris	NHMW 23905.4	China	Tingan, Hainan	F	
15	T. albolabris	NHMW 23905.5a	China	Tingan, Hainan	F	
16	T. albolabris	NHMW 23905.6	China	Tingan, Hainan	F	
17	T. albolabris	NHMW 23905.5b	China	Tingan, Hainan	F	
18	T. albolabris	NHMW 23905.7	China	Tingan, Hainan	F	
19	T. albolabris	NHMW 23905.9	China	Tingan, Hainan	F	
20	T. albolabris	SMF 21224	China	Hainan	F	
21	T. albolabris	SMF 21222	China	Hainan	F	
22	T. albolabris	NHMW 23926.4	China	Hong Kong	F	
23	T. albolabris	ZMB 66282	China	Guangdong	F	
24	T. albolabris	ZMB 27669	China	Guangdong	F	
25	T. albolabris	MNHN 1999.9030	China	Guangdong	F	
26	T. albolabris	MNHN 1999.9031	China	Guangdong	F	
27	T. albolabris	DTU 602	Vietnam	Bac Huong Hoa, Quang Tri	F	
28	T. albolabris	S 0093-1	China	Guangdong	F	
29	T. albolabris	S 0093-2	China	Guangdong	F	
30	T. albolabris	S 0093-3	China	Guangdong	F	
31	T. albolabris	MNHN 1904.0404	Vietnam	Bao Lac, Cao Bang	F	
32	T. albolabris	MNHN 1904.0405	Vietnam	Bao Lac, Cao Bang	F	
33	T. caudornatus	MNHN 1893.0415	Myanmar	Bhamo, Kachin	М	
34	T. caudornatus	CAS 232425	Myanmar	Myitkyina, Kachin	SM	
35	T. caudornatus	CAS 241264	Myanmar	Indawgyi Lake, Myitkyina, Kachin	М	
36	T. caudornatus	CAS 221549	Myanmar	Putao, Kachin	SM	
37	T. caudornatus	CAS 224646	Myanmar	Putao, Kachin	М	
38	T. caudornatus	CAS 244953	Myanmar	Homalinn, Khandi, Sagaing	М	
39	T. caudornatus	MSNG 30533-B	Myanmar	Bhamo, Kachin	М	
40	T. caudornatus	NHMUK 1974.907	Myanmar	Sumprabum, Kachin	М	
41	T. caudornatus	USNM 537444	Myanmar	Chatthin WS, Sagaing	М	
42	T. caudornatus	USNM 524076	Myanmar	Chatthin WS, Sagaing	F	
43	T. caudornatus	CAS 216144	Myanmar	Shwe U Daung, Pyin Oo Lwin, Mandalay	F	
44	T. caudornatus	CAS 245234	Myanmar	Myitkyina, Kachin	F	
45	T. caudornatus	CAS 230233	Myanmar	Madanbaw, Putao, Kachin	F	

Appendix Table S1. (Continued)

No.	Species	Collection number	Country	Locality	Sex Status
46	T. caudornatus	MNHN 1893.0416	Myanmar	Bhamo, Kachin	F
47	T. caudornatus	MSNG 30533-A	Myanmar	Bhamo, Kachin	F
48	T. caudornatus	MSNG 2180	Myanmar	Bhamo, Kachin	F
49	T. caudornatus	MSNG 30814	Myanmar	Teizo, Kachin	F
50	T. caudornatus	NHMUK 1974.906	Myanmar	N'Changyang, Kachin	F
51	T. caudornatus	CAS 230260	Myanmar	Hukaung WS, Myitkyina, Kachin	F
52	T. davidi	Not collected	India	Chuckchucka, Nicobar	М
53	T. davidi	NHMUK 1936.7.7.47	India	Nicobar	М
54	T. davidi	NHMUK 1936.7.7.48	India	Andaman	М
55	T. davidi	NHMUK 1936.7.7.46	India	Nicobar	М
56	T. davidi	BNHS3304	India	Chuckchucka, Nicobar	F
57	T. davidi	NHMUK 1936.7.7.40	India	Chuckchucka, Nicobar	F
58	T. davidi	NHMUK 1936.7.7.41	India	Chuckchucka, Nicobar	F
59	T. davidi	NHMUK 1936.7.7.42	India	Chuckchucka, Nicobar	F
60	T. davidi	Not collected	India	Chuckchucka, Nicobar	F
61	T. davidi	Not collected	India	Chuckchucka, Nicobar	F
62	T. davidi	DOSMB 05104	India	Chuckchucka, Nicobar	F
63	T. davidi	NHMW 23925:1	India	Nicobar	F
64	T. davidi	NHMW 23925:2	India	Nicobar	F
65	T. guoi	MNHN 1935.0464	Vietnam	Sapa, Lao Cai	М
66	T. guoi	MNHN 1935.0464	Vietnam	Sapa, Lao Cai	М
67	T. guoi	PSUaa 0046	Thailand	Chiang Mai	М
68	T. guoi	PSUaa 0046	Thailand	Chiang Mai	М
69	T. guoi	ZFMK 70442	Thailand	Phu Luang, Loei	М
70	T. guoi	ZFMK 74282	Thailand	Samoeng, Chiang Mai	М
71	T. guoi	ZFMK 74283	Thailand	Samoeng, Chiang Mai	М
72	T. guoi	NHMW 23926.6	Thailand	Phu Kin Mt, Chiang Rai	М
73	T. guoi	NHMW 23926.9	Thailand	Phu Kin Mt, Chiang Rai	М
74	T. guoi	NHMW 23926.7	Thailand	Phu Kin Mt, Chiang Rai	М
75	T. guoi	NHMW 23926.8	Thailand	Phu Kin Mt, Chiang Rai	М
76	T. guoi	NHMW 23903.3	Myanmar	Mt Caren (Karen Hills), Shan	М
77	T. guoi	NHMW 23920.1	Myanmar	Mawlamyine, Mon	М
78	T. guoi	CAS 222595	Myanmar	Mudon, Mawlamyine, Mon	М
79	T. guoi	MNHN 1935.0465	Vietnam	Lao Cai	F
80	T. guoi	MNHN 1935.0466	Vietnam	Lao Cai	F
81	T. guoi	QSMI 0761	Thailand	Chiang Mai	F
82	T. guoi	NHMW 23930.1	Thailand	Phu Kin Mt, Chiang Rai	F
83	T. guoi	NHMW 23930.2	Thailand	Phu Kin Mt, Chiang Rai	F
84	T. guoi	NHMW 23926.10	Thailand	Phu Kin Mt, Chiang Rai	F
85	T. guoi	ZFMK 70443	Thailand	Phu Luang, Loei	F
86	T. guoi	ZMH R06267	Myanmar	Mt Caren (Karen Hills), Shan	F
87	T. guoi	MNHN 1935.0465	Vietnam	Lao Cai	F
88	T. guoi	MNHN 1935.0466	Vietnam	Lao Cai	F
89	T. guoi	QSMI 0761	Thailand	Chiang Mai	F

Appendix Table S1. (Continued)

No.	Species	Collection number	Country	Locality	Sex	Status
90	T. insularis	ZMH R06938	Indonesia	Java	М	
91	T. insularis	NHMW 23928	Indonesia	Sumba	М	
92	T. insularis	NHMW 23929	Indonesia	Sumbawa	М	
93	T. insularis	SMF 21229	Indonesia	Sumbawa	М	
94	T. insularis	SMF76353	Indonesia	Florès	М	
95	T. insularis	MNHN 4056	Indonesia	Timor	М	
96	T. insularis	MNHN 4057	Indonesia	Timor	М	Lectotype
97	T. insularis	NHMW 39581	Indonesia	Bali	F	
98	T. insularis	NHMW 23924	Indonesia	Kisser Isl	F	
99	T. insularis	SMF 73324	Indonesia	Bali, near Tangu	F	
100	T. insularis	SMF 48734	Indonesia	Bali	F	
101	T. insularis	SMF 23374	Indonesia	Sumbawa, Batoe Doelang	F	
102	T. insularis	SMF 21220	Indonesia	Timor	F	
103	T. insularis	SMF76352	Indonesia	Florès	F	
104	T. insularis	MNHN 2002.0402	Indonesia	Wetar	F	
105	T. insularis	SMF 106707	Indonesia	Flores Korabewa	F	
106	T. insularis	SMF 106708	Indonesia	Flores Korabewa	F	
107	T. insularis	SMF 106706	Indonesia	Flores Korabewa	F	
108	T. insularis	SMF 106705	Indonesia	Flores Korabewa	F	
109	T. salazar	NHMUK 72.4.17.379	India	Darjeeling, West Bengal	М	
110	T. salazar	NHMUK 1908.6.23.99	India	Dibrugarh, Assam	F	
111	T. salazar	NHMUK 1937.3.1.14	India	Central Prov	F	
112	T. septentrionalis	MHNG 1404.31	Nepal	Pokhara	М	Holotype
113	T. septentrionalis	MHNG 1400.24	Nepal	Pokhara	М	Paratype
114	T. septentrionalis	MHNG 1400.31	Nepal	Pokhara	М	Paratype
115	T. septentrionalis	MHNG 1400.47	Nepal	Pokhara	М	Paratype
116	T. septentrionalis	SH 762	Nepal	No specific	М	
117	T. septentrionalis	MHNG 1400.29	Nepal	Pokhara	М	Paratype
118	T. septentrionalis	CAS 135750	Nepal	Pokhara	F	Paratype
119	T. septentrionalis	MNHG 1400.18	Nepal	Pokhara	F	Paratype
120	T. septentrionalis	MHNG 1400.35	Nepal	Pokhara	F	Paratype
121	T. septentrionalis	MHNG 1400.34	Nepal	Pokhara	F	Paratype
122	T. septentrionalis	MHNG 1400.26	Nepal	Pokhara	F	Paratype
123	T. septentrionalis	MHNG 1400.32	Nepal	Pokhara	F	Paratype
124	T. septentrionalis	MHNG 1400.38	Nepal	Pokhara	F	Paratype
125	T. septentrionalis	MHNG 1400.45	Nepal	Pokhara	F	Paratype
126	T. septentrionalis	MHNG 1400.39	Nepal	Pokhara	F	Paratype
127	T. septentrionalis	MHNG 1400.36	Nepal	Pokhara	F	Paratype
128	T. septentrionalis	MHNG 1400.25	Nepal	Pokhara	F	Paratype
129	T. septentrionalis	MHNG 1400.37	Nepal	Pokhara	F	Paratype
131	T. septentrionalis	MHNG 1400.30	Nepal	Pokhara	F	Paratype
130	T. septentrionalis	SH 688	Nepal	No specific	F	
131	T. septentrionalis	SH 1166	Nepal	No specific	F	
132	T. septentrionalis	SH 761	Nepal	No specific	F	

Appendix Table S1. (Continued)

No.	Species	Collection number	Country	Locality	Sex	Status
133	T. uetzi	CAS 232480	Myanmar	Pyin Mana, Naypyidaw	М	Paratype
134	T. uetzi	CAS 204846	Myanmar	Mandalay, Mandalay	М	
135	T. uetzi	CAS 204847	Myanmar	Mandalay, Mandalay	М	
136	T. uetzi	CAS 246991	Myanmar	Myingchan, Kandaw, Mandalay	М	
137	T. uetzi	CAS 215907	Myanmar	Taung Aoe, Magway	М	
138	T. uetzi	CAS 210665	Myanmar	Kyaukpadaung, Mandalay	М	
139	T. uetzi	CAS 242723	Myanmar	Yangon-Pyay, Bago	М	
140	T. uetzi	CAS 220124	Myanmar	Mindat, Chin	М	
141	T. uetzi	CAS 243055	Myanmar	Gangaw, Pakhokku, Magway	М	Paratype
142	T. uetzi	CAS 243159	Myanmar	Gangaw, Pakhokku, Magway	М	
143	T. uetzi	CAS 243024	Myanmar	Gangaw, Pakhokku, Magway	М	Holotype
144	T. uetzi	CAS 215400	Myanmar	Pyaro, Yin Ma Bin, Sagaing	F	
145	T. uetzi	CAS 213722	Myanmar	Le Kaing, Pwint Byu, Min Bu, Magway	F	
146	T. uetzi	CAS 215343	Myanmar	Ma Bin, Sagaing	F	
147	T. uetzi	CAS 214110	Myanmar	Popa Mt. Mandalay	F	
148	T. uetzi	CAS 210691	Myanmar	Kyaukpadaung, Mandalay	F	
149	T. uetzi	CAS 235954	Myanmar	Nyaungshwe, Taunggyi, Shan	F	Paratype
150	T. uetzi	CAS 214110	Myanmar	Popa Mt. Mandalay	F	
151	T. uetzi	CAS 210691	Myanmar	Kyaukpadaung, Mandalay	F	Paratype
152	T. uetzi	CAS 210690	Myanmar	Kyaukpadaung, Mandalay	F	
153	T. uetzi	CAS 246953	Myanmar	Yesagyo, Pakhokku, Magway	F	
154	T. uetzi	CAS 242985	Myanmar	Gangaw, Pakhokku, Magway	F	
155	T. uetzi	CAS 234852	Myanmar	Mindat, Chin	F	Paratype
156	T. uetzi	CAS 215540	Myanmar	Mon Ywa, Sagaing	F	Paratype
157	T. uetzi	CAS 215472	Myanmar	Mon Ywa, Sagaing	F	Paratype
158	T. uetzi	CAS 210109	Myanmar	Alaungdaw Kathapa, Sagaing	F	Paratype
159	T. uetzi	CAS 235958	Myanmar	Phalum, Chin	F	

Number	Abbreviation	Meaning	Code
1	Sex	Sex	1: male; 2: female; 3: unsexed
2	SVL	Snout-vent length	value
3	TaL	Tail-length	value
4	TL	Total length	value
5	TaL/TL	ratio tail length / TL	value
7	Ven	Number of ventrals	value
9	Sc	Number of subcaudals	value
11	ASR	Number of scale-rows on neck	value
12	MSR	Number of scale-rows at midbody	value
13	DSR	Number of scale rows before vent	value
14	KSR	Keeling of dorsal scales at midbody in males	0: smooth; 1: weakly keeled; 2
			distinctly keeled
16	SL-l	Number of supralabials at left	value
17	SL-r	Number of supralabials at right	value
18	Σ SL	Total number of supralabials	value
19	C3SL/SubOc-1	Number of scales between 3rd SL and subocular (left)	value
20	C3SL/SubOc-r	Number of scales between 3rd SL and subocular (right)	value
19	C4SL/SubOc-l	Number of scales between 4th SL and subocular (left)	value
20	C4SL/SubOc-r	Number of scales between 4th SL and subocular (right)	value
27	C45SL/SubOc-l	Number of scales between 4th and 5th SL and subocular (left)	value
28	C45SL/SubOc-r	Number of scales between 4th and 5th SL and subocular (right)	value
31	CEP	Number of cephalic scales	value
32	SC/SpOc-1	Number of scales surrounding the supraocular at left	value
33	SC/SpOc-r	Number of scales surrounding the supraocular at right	value
34	Σ SC/SpOc	Total number of scales surrounding both supraoculars	value
35	K-Occ	Keeling of occipital scales in males	0 : smooth; 1 : weakly keeled; 2 : distinctly keeled
			0 : smooth; 1 : weakly keeled; 2 :
37	K-Tem	Keeling of temporal scales in males	distinctly keeled
39	IN-sep	Number of scale(s) between the internasals	value
40	Sn-SC	Number of scales on the snout	value
41	He-SC	Number of scales on upper head	value
42	IL-l	Number of infralabials at left	value
43	IL-r	Number of infralabials at right	value
44	ΣIL	Total number of infralabials	value
45	HL	Head length	value
46	HL/SVL	Ratio head length / snout-vent length in males	value
48	SnL	Snout length	value
49	SnL/HL	Ratio snout length / head length in males	value
51	ED	Eye diameter (vertical)	value
52	DEL	Distance eye-lip	value
53	SnL/ED	Ratio snout length / eye diameter in males	value
55	ED/DEL	Ratio eye diameter / distance eye-lip in males	value
57	D E-nostril	Distance eye-nostril	value
58	D E-pit	Distance eye-pit	value
			continued on the next page

Appendix Table S2. List of morphological variables recorded from each specimen studied.

Appendix Table S2. (Continued)

Number	Abbreviation	Meaning	Code
59	D E-nostril/HL	Ratio distance eye-nostril / head length in males	value
61	D E-pit/HL	Ratio distance eye-pit / head length in males	value
	D E-pit/D E-	Ratio distance eye-pit / distance eye-nostril in males	
63	nostril		value
65	W-In	Width of internasal	value
66	L-SpOc	Length of supraocular(s)	value
67	W-SpOc	Width of supraocular(s)	value
68	L-SpOc/W-SpOc	e Ratio length of SupOc / Width of SupOc	value
69	W-In/W-SpOc	Ratio width of internasals / Width of SupOc	value
70	W-SpOc/W-In	Ratio width of SupOc / Width of internasals	value
71	L-3SL	Length of 3rd supralabial	value
72	H-3SL	Height of 3rd supralabial	value
73	L-3SL/H-3SL	Ratio length of 3rd supralabial / height of 3rd supralabial	value
74	L-3SL/HL	Ratio length of 3rd SL / head length in males	value
76	H-4SL	Height of 4th supralabial	value
77	H-4SL/H-3SL	Ratio height of 4th supralabial / heigth of 3rd supralabial	value
78	BoCol	Body color	1: green
79	DorBan	Presence of dark dorsal bands	0: absent; 1: present
80	DorDots	Presence of white vertebral dots	0: absent; 1: present
		Eye color	1: red; 2: yellow, gold or greenish
81	EyeCol		yellow; 3: green; 4: orange
82	POcStr	Postocular streak	0: absent; 1: present
		Postocular streak	0: absent; 1: white; 2: red above, white
83	COLPOcStr		below
84	VLSTRIPE	Ventrolateral stripe	0: absent; 1: present
		Ventrolateral stripe	0 : absent; 1 : cream or bluish-white; 2 :
85	COLVLSTRIPE		white above, red below
			1: blotched, no sharp limit with green;
86	TAILPAT	Tail pattern (dorsal surface)	2: uniform, sharp limit with green

Appendix Table S3. Sequences and voucher specimens of the genus *Trimeresurus* and outgroup taxa used in this study.

No.	Taxon	Collection ID	Locality	Cytb	Source
	Subgenus Trimeresurus				
1	T. albolabris	AM A157	Hong Kong, China	AF171884	Malhotra & Thorpe (2000)
2	T. albolabris	AM B6	Cilacap, Java, Indonesia	AF517186	Creer et al. (2003)
3	T. albolabris	AM B22	Nonthaburi, Thailand	AF517189	Creer et al. (2003)
4	T. albolabris	AM B117	Ho Chi Minh, Vietnam	AF517190	Creer et al. (2003)
5	T. albolabris	ROM 30854	Tam Dao, Vinh Phuc, Vietnam	AY352769	Malhotra & Thorpe (2004)
6	T. albolabris	ROM 34544	Gia Lai, Vietnam	AY352770	Malhotra & Thorpe (2004)
7	T. albolabris	GP 1087	Cenxi, Guangxi, China	KP999364	Zhu et al. (2016)
8	T. albolabris	GP 1472	Sekong, Laos	KP999370	Zhu et al. (2016)
9	T. albolabris	GP 2534	Fujian, China	KP999403	Zhu et al. (2016)
10	T. albolabris	GP 5	Hainan, China	KP999410	Zhu et al. (2016)
11	T. albolabris	GP 977	Guangxi, China	KP999420	Zhu et al. (2016)
12	T. albolabris	ROM 27475	Kon Tum, Vietnam	KP999428	Zhu et al. (2016)
13	T. albolabris	ROM 34545	Gia Lai, Vietnam	KP999432	Zhu et al. (2016)
14	T. albolabris	ROM 35300	Hai Duong, Vietnam	KP999435	Zhu et al. (2016)
15	T. albolabris	ROM 35323	Cao Bang, Vietnam	KP999438	Zhu et al. (2016)
16	T. albolabris	SYS r001526	Guangdong, China	MK201514	Li et al. (2020)
17	T. albolabris	GV 2019111704	Tam Dao, Vinh Phuc, Vietnam	MN746390	Chen et al. (2021)
18	T. cf. albolabris	AM B47	Phetburi, Thailand	AF517187	Creer et al. (2003)
19	T. cf. albolabris	AM B 20	Nakhon Si Thammarat, Thailand	GQ428474	Malhotra et al. (2010)
20	T. andersoni	AM A77	Andam, India	AF171922	Malhotra & Thorpe (2000)
21	T. cantori	AM A85	Nicobar, India	AF171889	Malhotra & Thorpe (2000)
22	T. caudornatus	CAS 216144	Mandalay, Myanmar	KP999351	Zhu et al. (2016)
23	T. caudornatus	CAS 216173	Mandalay, Myanmar	KP999352	Zhu et al. (2016)
24	T. caudornatus	ZMNH AR1238	Yingjiang, Yunnan, China	MK575036	Chen et al. (2020)
25	T. caudornatus	ZMNH AR1239	Yingjiang, Yunnan, China	MK575037	Chen et al. (2020)
26	T. caudornatus	CAS 235956	Indawgyi, Kachin, Myanmar	ON804486	Chan et al (2022)
27	T. erythrurus	CAS 239745	Rakhine, Myanmar	KP999357	Zhu et al. (2016)
28	T. fasciatus	AM B212	Tanadjampea, Indonesia	GQ428475	Malhotra et al. (2010)
29	T. guoi	AM A165	Loei, Thailand	AF517185	Creer et al. (2003)
30	T. guoi	AM A229	Pha Yao, Thailand	AY059566	Malhotra & Thorpe (2004)
31	T. guoi	CAS 222595	Mon, Myanmar	KP999354	Zhu et al. (2016)
32	T. guoi	KIZ 05191	Mengla, Yunnan, China	KP999424	Zhu et al. (2016)
33	T. guoi	ROM 39389	Lao Cai, Vietnam	KP999440	Zhu et al. (2016)
34	T. guoi	YNJC0012	Yunnan, China	MN746393	Chen et al. (2020)
35	T. guoi	JCR 2019062401	Jiangcheng, Yunnan, China	MN746395	Chen et al. (2020)
36	T. guoi	DL 20190906	Simao, Yunnan, China	MN746396	Chen et al. (2020)
37	T. cf. guoi	GP 3565	Mengzi, Yunnan, China	KT216372	Guo et al. (2015)
38	T. cf. guoi	GP 3566	Mengzi, Yunnan, China	KT216374	Guo et al. (2015)
39	T. cf. guoi	GP 3567	Mengzi, Yunnan, China	KT216375	Guo et al. (2015)
40	T. insularis	AM B7	Timor, Indonesia	AY059568	Malhotra & Thorpe (2004)
41	T. purpureomaculatus	AM B139	Perak, Malaysia	AY352771	Malhotra & Thorpe (2004)
42	T. ayeyarwadyensis	CAS 212246	Ayeyarwade, Myanmar	AY352772	Malhotra & Thorpe (2004)
43	T. salazar	AM A100	Mahattari, Nepal	AF171909	Malhotra & Thorpe (2000)
44	T. salazar	CESS 331	Meghalaya, India	MT762236	Mallik et al. (2021)

Appendix Table S3. (Continued)

No.	Taxon	Collection ID	Locality	Cytb	Source
45	T. septentrionalis	CESS 388	Foothills of Himalayas, India	MT762239	Mallik et al. (2021)
46	T. septentrionalis	V 39	Mussoorie, Uttarakhand, India	MG995825	Vaishnavi et al. unpublished
47	T. septentrionalis	AM B487	Kathmandu, Nepal	AY352755	Malhotra & Thorpe (2004)
48	T. uetzi	CAS 215472	Sagaing, Myanmar	KP999348	Malhotra & Thorpe (2004)
49	T. uetzi	CAS 215540	Sagaing, Myanmar	KP999349	Zhu et al. (2016)
50	T. uetzi	CAS 215604	Sagaing, Myanmar	KP999350	Zhu et al. (2016)
51	T. uetzi	CAS 220124	Chin, Myanmar	KP999353	Zhu et al. (2016)
52	T. uetzi	CAS 232480	Mandalay, Myanmar	KP999355	Zhu et al. (2016)
53	T. uetzi	CAS 234852	Chin, Myanmar	KP999356	Zhu et al. (2016)
54	T. uetzi	CAS 243051	Magway, Myanmar	KP999360	Zhu et al. (2016)
55	T. uetzi	CAS 243086	Magway, Myanmar	KP999361	Zhu et al. (2016)
56	T. uetzi	CAS 243144	Magway, Myanmar	KP999362	Zhu et al. (2016)
57	T. uetzi	CAS 210301	Alaungdaw, Kathapa, Sagaing, Myanmar	,ON804499	Zhu et al. (2016)
58	T. uetzi	CAS 243175	Gangaw, Magway, Myanmar	ON804500	Zhu et al. (2016)
	Out group				
59	Trimeresurus (Viridovipera) gumprechti	KIZ 047083	Jingdong, Yunnan, China	KT216398	Guo et al. (2015)
60	Trimeresurus (Viridovipera) stejnegeri	GP 475	Qimen, Anhui, China	KX019099	Guo et al. (2015)
61	Trimeresurus (Viridovipera)	VNUH 190606	Phong Nha-Ke Bang, Quang Binh.		Dawson et al. (2008)
	truongsonensis	= AM B659	Vietnam	EU443815	
62	Trimeresurus (Viridovipera) yunnanensis	SCUM 035114 =GP 38	Huili, Sichuan, China	EF597523	Dawson et al. (2008)
63	Trimeresurus (Viridovipera) sichuanensis	GP 07	Hejiang, Sichuan, China	HO850447	Guo & Wang (2011)
64	Trimeresurus (Viridovipera) mayaae	BNHS-365	Ri-Bhoi, Meghalaya, India	OM966860	Rathee et al. (2022)
65	Trimeresurus (Viridovipera) medoensis	KIZ YPX46123	Tibet, China	MW133479	Che et al. unpublished
66	Trimeresurus (Viridovipera) vogeli	AM B97	Nakhon Si Ratchasima, Thailand	AY059574	Malhotra & Thorpe (2004)
67	Trimeresurus (Trimeresurus) kuiburi	N.a	Kui Buri, Prachuap Khiri Khan, Thailand	, MW806923	Sumontha et al. (2021)
68	Trimeresurus (Trimeresurus) venustus	AM A241	Nakhon Si Thammarat, Thailand	AF171914	Malhotra & Thorpe (2000)
69	Trimeresurus (Trimeresurus) kanburiensis	AM B522	Kanchanaburi, Thailand	AY289225	Malhotra & Thorpe (2000)
70	Trimeresurus (Trimeresurus) macrops	AM B27	Bangkok, Thailand	AF517184	Creer et al. (2003)
71	Trimeresurus (Himalayophis) arunachalensis	APF/SFRI-1871	Arunachal Pradesh, India	MK720609	Captain <i>et al.</i> (2019)
72	Trimeresurus (Himalayophis) tibetanus	ZMB 65641 = AM B258	Helambu, Nepal	AY352749	Malhotra & Thorpe (2004)
73	Trimeresurus (Popeia) sabahi barati	MZB-OPHI5197	Jambi, Sumatra, Indonesia	KP899264	Wostl et al. (2016)

Appendix Table S3. (Continued)

No.	Taxon	Collection ID	Locality	Cytb	Source
74	Trimeresurus (Popeia) sabahi fucatus	A203	Thung Song, Nakhon S Thammarat, Thailand	i AY371796	Sanders et al. (2006)
75	Trimeresurus (Popeia) sabahi	LSUHC 6118	Pulau Tioman, Pahang, Malaysia	KX660502	Figueroa et al. (2016)
	buniana				
76	Trimeresurus (Popeia) sabahi sabahi	B344	Mt Kinabalu, Sabah, Malaysia	AY371815	Sanders et al. (2006)
77	Trimeresurus (Popeia) sabahi tobe	MZB-OPHI5342	Sumatra Utara, Indonesia	KP899266	Wostl et al. (2016)
78	Trimeresurus (Popeia) popeiorum	DL 2017070101	Yingjiang, Yunnan, China	MH779875	Chen et al. (2019)
79	Trimeresurus (Popeia) tenasserimensis	USNM 587988	Lenya, Tanintharyi, Myanmar	MF476867	Mulcahy et al. (2017)
80	Trimeresurus (Popeia) lanna	GP 3328	Mengla, Yunnan, China	KT216361	Guo et al. (2015)
81	Trimeresurus (Popeia) phuketensis	LSUHC 7566	Thailand	KX660505	Figueroa <i>et al.</i> (2016)
82	Trimeresurus (Popeia) nebularis	LSUHC 10268	Cameron Highlands, Pahang Malaysia	,KX660506	Figueroa <i>et al.</i> (2016)
83	Trimeresurus (Parias)	AM B4	Mindanao, Philippines	AY352764	Figueroa et al. (2016)
	flavomaculatus				
84	Trimeresurus (Parias) mcgregori	AM B289	Batan, Philippines	AY371831	Sanders et al. (2004)
85	Trimeresurus (Parias) malcolmi	AM B349	Mt. Kinabalu, Sabah, Borneo	,AY371832	Sanders et al. (2004)
			Malaysia		
86	Trimeresurus (Parias) sumatranus	B367	Bengkulu, Sumatra, Indonesia	AY371824	Sanders et al. (2004)
87	Trimeresurus (Parias) schultzei	AM B210	Palawan, Philippines	AY352756	Malhotra & Thorpe (2004)
88	Trimeresurus (Parias) hageni	AM B33	Songhkla, Thailand	AY059567	Malhotra & Thorpe (2004)
89	Craspedocephalus gramineus	CESS 056	Amboli, Maharashtra, India	MT762212	Mallik et al. (2021)
90	Craspedocephalus occidentalis	CESS 040	Karnataka, India	MT762208	Mallik et al. (2021)
91	Craspedocephalus trigonocephalus	sRAP0453	Sri Lanka	KC347479	Pyron <i>et al.</i> (2013)
92	Craspedocephalus strigatus	CESS142	Kerala, India	MT762220	Mallik et al. (2021)
93	Craspedocephalus malabaricus	CESS273	Karnataka, India	MT762234	Mallik et al. (2021)
94	Craspedocephalus travancoricus	CESS074	Kerala, India	MT762213	Mallik et al. (2021)
95	Craspedocephalus peltopelor	CESS108	Kerala, India	MT762218	Mallik et al. (2021)
96	Craspedocephalus borneensis	B301	East, Malaysia	AY352754	Malhotra & Thorpe (2004)
97	Craspedocephalus wiroti	No number	Thailand	DQ646788	David et al. (2006)
98	Craspedocephalus puniceus	В 392	Indonesia	AY352757	Malhotra & Thorpe (2004)
99	Azemiops feae	AM B499	China	AY352747	Malhotra & Thorpe (2004)
100	Protobothrops elegans	UMMZ 199970	Japan	AY223575	Parkinson et al. (2002)

phyl	ogenetic analyses of	this study.								
No.	Species	1	2	3	4	5	6	7	8	9
1	T. caudornatus	0.0-2.6%								
2	T. albolabris	6.7–9.6%	0.1-4.3%							
3	T. cf. albolabris	5.8-7.3%	3.4-6.2%	1.40%						
4	T. cf. guoi	5.9-6.5%	2.6-3.2	2.5-4.7%	0					
5	T. guoi	5.6-7.2%	3.6-6.0%	2.8-4.2%	2.3-3.3%	0.0-1.8%				
6	T. salazar	5.3-7.3%	7.5–10.2%	7.3-8.5%	7.1–7.8%	6.9-8.5%	1.20%			
7	T. septentrionalis	5.9-6.9%	7.0-8.7%	6.2–7.4%	6.0-6.8%	5.9–7.4%	5.9-6.9%	0.4–1.6%		
8	T. uetzi	5.8-7.0%	6.9–9.9%	6.1–6.9%	6.1–7,3%	6.5-8.2%	5.9–7.6%	6.4–6.9%	0.0-3.6%	
9	T. insularis	7.3-8.4%	7.8–10.1%	8.0-8.2%	7.60%	6.5-7.2%	8.0-8.6%	7.2-8.0%	8.3–9.0%	0

Appendix Table S4. Uncorrected *p*-distances (percentage) between the sequences of cyt *b* mtDNA gene of species of the complex of *Trimeresurus albolabris* and *T. septentrionalis* species groups distributed in Indo-Burma area included in the phylogenetic analyses of this study.

Appendix Table S5. Statistically significant differences between *Trimeresurus caudornatus* and the remaining members of *Trimeresurus* in the *T. albolabris* and *T. septentrionalis* species groups based on Mann–Whitney U Tests. See Appendix Table S2 for acronyms of morphological characters. Data left of the gray line represent male specimens, whereas data right of the gray line represent female specimens. Data with an asterisk (*) represent test results with p-values less than 0.01.

Taxon	albolabris	caudornatus	guoi	salazar	septentrionalis	uetzi
albolabris	-	VEN, VEN+SC	_	-	VEN*, SC*, VEN+SC*	VEN*, SC*, SL*, IL
caudornatus	VEN*, VEN+SC	-	_	_	VEN*, SC*, VEN+SC*	SC*, IL
guoi	VEN*		-	-	SC*, VEN+SC*	VEN, SC
salazar	VEN*		VEN	-	-	-
septentrionalis	VEN*, SC*, VEN+SC*	SC	SC*, VEN+SC	_	-	VEN*, VEN+SC*
uetzi	VEN*			—	SC	-

Appendix Table S6. Detailed infomation on *Trimeresurus caudornatus* specimens from Myanmar preserved at CAS (see: https://researcharchive.calacademy.org/research/herpetology/catalog/Index.asp or http://portal.vertnet.org/search?q =Trimeresurus+CAS+Myanmar)

Collection	Verified by Verified by	Previous ID Proposed	ID	Field number	Sex	Date collected	Elevation
number	molecular morphology	-					
CAS 216144	yes yes	T. septentrionalis T. caudorn	atus	JBS-5776	adult female	4/10/2000	No data
CAS 216173	no yes	T. septentrionalis T. caudorn	atus	JBS-5847	adult male	12/10/2000	No data
CAS 216173	yes no	T. albolabris T. caudorn	atus	JBS-5847	adult male	12/10/2000	No data
CAS 221549	no yes	T. septentrionalis T. caudorn	atus	JBS-10322	adult male	17/9/2001	No data
CAS 224646	no yes	T. septentrionalis T. caudorn	atus	JBS-12289	adult male	13/4/2002	560 m
CAS 230260	no yes	T. yunnanensis T. caudorn	atus	JBS-13002	adult female	13/6/2002	No data
CAS 232425	no yes	T. septentrionalis T. caudorn	atus	JBS-16900	adult female	2/4/2003	234 m
CAS 235956	yes yes	T. erythrurus T. caudorn	atus	JBS-17204	adult female	7/5/2003	169 m
CAS 241264	no yes	Trimeresurus sp. T. caudorn	atus	MHS-25907	adult male	19/7/2008	215 m
CAS 244953	no yes	T. septentrionalis T. caudorn	atus	JBS-15459	adult male	1/11/2002	155 m
CAS 245234	no yes	T. septentrionalis T. caudorn	atus	MHS-28046	subadult female	7/7/2009	304 m
Appendix T	Cable S6. (Continue)						
Collection	Collecter (CAS team)	Biology		Location			
number							
CAS 216144	H. Win & T. Thin	1940 hrs. Air temp. 76.5 F.		Myanmar: M	andalay Region:	Pyin Oo Lwin I	District:
		Relative humidity 92%. In tr	ree.	Tha Bake Ky Sanctuary, N	in Township, Shv 22 52 28.4, E 96	we U Daung Wi 05 25.2	ldlife
CAS 216173	H. Win, T. Thin & S.L. O	o 2040 hrs. Air temp. 84.2 F.		Myanmar: Ma	andalay Region:	Pyin Oo Lwin D	istrict: Tha
		Relative humidity 69%. In sl	hrub.	Bake Kyin To	wnship, Shwe U	Daung Wildlife	Sanctuary,
				Kyauk Kyi Vi	llage, N 22 58 37	7.4, E 96 05 54.3	3
CAS 216173	H. Win, T. Thin and S.L.	2040 hrs. Air temp. 84.2 F.		Myanmar: Ma	andalay Division:	Pyin Oo Lwin I	District:
	Oo	Relative humidity 69%. In s	hrub.	Tha Bake Kyi Sanctuary, Ky	n Township, Shw auk Kyi Village,	ve U Daung Wild N 22 58 37.4, E	dlife 96 05 54.3
CAS 221549	K.S. Lwin & H. Tun	Stomach contained a		Myanmar: Ka	chin State: Putac	o Dist.: Putao To	wnship:
		Sphenomorphus indicus (in separate vial), swallowed tail	first.	Ahtonga Villa	nge, 27 15 41.8 N	I, 97 48 10.0 E	
CAS 224646	H. Win, Y.N.T. Na, H.	1609 hrs. In termite mound,	10	Myanmar: Kao	chin State: Putao I	District: Nagmung	g Township:
	Ram & S. Di	inches deep.		Nagmung Tow	m, 27 30 36.5 N, 9	97 49 50.4 E, 184	0 ft
CAS 230260	H. Win, K.S. Lwin, A.K.	No data		Myanmar: Ka	chin State: Tana	i Township, Ma	Kaw
	Shein & H. Tun			Village; along Sanctuary, N	g the Lero Road, 26 27 00.0 E 96	in Hukaung Val 41 35.5	ley
CAS 232425	H. Win, K.S. Lwin & A.F	. Under log.		Myanmar: Ka	chin State: Ta Na	ai Township, Ta	Ruing
	Shein			Village, N 26	35 24.6, E 96 29	9 19.3, 770 ft	
CAS 235956	G.O.U. Wogan, J.A.	2206 hrs. Air temp. 79 F, 78	%	Myanmar: Ka	chin State: Moh	nyin Township,	Lone Ton
	Wilkinson, J.V. Vindum, I	H. relative humidity. In bush, 1	m	Village, Indav	vgyi Wildlife Sai	nctuary, 25 05 5	4.2 N, 96
	Win, T. Thin, K.S. Lwin,	above ground.		17 20.1 E, 55	7 ft		
	A.K. Shein & W. Aung						
CAS 241264	K.T. Kyaw, M. Win, Y.M	. 2230 hrs. Air temp. 84.0 F, 8	39%	Myanmar: Ka	chin State: Moh	nyin Township,	Indawgyi
	Win & S.L. Oo	relative humidity.		Wildlife Sanc	tuary, NW of Ny	ang Bin village	, 25 16
GAG 044052				09.8 N, 96 20	32.7 E, 707 ft	1' T 1'	
CAS 244953	1. 1hin, K.S. Lwin & H.	1948 hrs. Air temp. 75.2 F. 85%		Myanmar: Sa	gaing Region: H	omalin Townshi	p, North of
CAR 245224	Iuli Million SI O 71	2105 has Air town OCOT	c nver	Museum V	, 23 22 19.0 N, 9	1.5 21 44.9 E, 31	
CAS 243234	Aung VM Win & K S	2103 IIIS. AIF temp. 80.0 F, /	570	Townshin: Ea	st side of Chipur	e Town 25.52.5	$\frac{1}{4} 2 N \Omega Q$
	Lwin	iolative nullifulty.		07 55.2 E 99	8 ft	€ 10w11, 2J J2 J	1.2 11, 70

distributed	in Indo-Burma a	rea.									
Species	Body pattern	Ventral	Ventrolatera	I Postocular	1 or 2 small scales	Temporal	Dorsal body	Iris color	MSR T	aL/TL (Males)	TaL/TL (Females)
		color	body stripes	stripe in males	in front of the pit	scales	scales				
caudornatus	verdant green	yellow green	absent	absent	absent	hardly keeled 1	eebly keeled	golden yellow 21	(22 or 23) 0.18–0.	22 (0.20±0.02, n=14) ($0.14-0.18 (0.16\pm0.01, n=19)$
albolabris	multicolor (verdant	t yellow	present	present	usually present	hardly keeled	moderately	copper	21 (19) 0.19–0.	21 (0.20±0.01, n=55)	$0.14-0.17$ (0.15 ± 0.01 , n=81)
	green, yellowish- green, cream)						keeled				
guoi	yellow green	yellow green	absent	absent	absent	hardly keeled	moderately keeled	Firebrick-red	21 0.14–0.	.22 (0.19±0.22, n=23)	$0.15-0.20 (0.16\pm0.01, n=18)$
salazar	Yellowish- green	yellowish green	present	present	absent	hardly keeled	moderately keeled	copper	21 (19) 0.15–0	1.20 (0.18±0.02, n=6)	$0.14-0.15 (0.15\pm0.01, n=3)$
septentrionalis	verdant green	yellow green	absent or	absent	absent	hardly keeled f	eebly keeled	green gold or	21 0.19–0	.23 (0.21±0.02, n=6) ($0.15-0.17$ (0.16 ± 0.01 , $n=14$)
			present					copper			
uetzi	verdant green or	yellowish	present	present	absent	hardly keeled	moderately	copper or	21	0.16 - 0.22	0.14 - 0.16
	yellowish green	green					keeled	green gold	0)	20 ± 0.02 , n=10)	$(0.15\pm0.01, n=11)$
Appendix [Fable S7. (Conti	nue)									
Species	VEN (Males)	VEN (Fei	males)	SC (Males)	SC (Females)	VEN+SC (A	Iales) VE	IN+SC (Females)	Hemipenes	Distribution	Sources
caudornatus	158–167 (162.43±2.71, n=14	158–1) (162.89±4.8	74 53- 6, n=19)	-74 (68.07±5.38, n=14)	52-68 (57.41±4.69, n=17)	, 219–24 (230.50±5.96,	1 211- , n=14)	-242 (219.82±7.8 n=17)	s, reaching SC 37-	-38 China, Myanmar	Zhao <i>et al.</i> (1998); Chen <i>et al.</i> (2020); our data
albolabris	146–162 (154.93±4.67, n=70	151–1 (158.80±4.77	72 40- 3, n=112)	−75 (63.08±8.44, n=67)	49–64 (53.54±3.71, n=104)	210-23. (218.00±11.04	2 200- ., n=64)	–232 (211.58±7.3 ² n=104)	t, reaching SC 15-	China, Vietnam, -18 Laos, Cambodia, Thailand, Indonesi	Vogel <i>et al.</i> (2023); our data
guoi	154–167 (159.95±4.19, n=27	155–1) (161.07±3.7	67 52- 3, n=18)	-75 (66.37±5.25, n=25)	53-69 (58.64±4.68, n=18)	, 210–24. (226.00±7.67,	2 210- , n=25)	-228 (219.71±5.98 n=18)	k, reaching SC 23-	China, Vietnam, -32 Laos, Thailand, Myanmar	Chen et al. (2021); our data
salazar	163−170 (166.40±2.88, n=6)	167−1 (169.33±2.(71 62-)8, n=3)	−73 (68.80±4.21, n=6)	$56-59 (58.00\pm1.73, n=3)$	225-24 (235.20±6.22	1 223- 3, n=6)	-230 (227.33±3.75 n=3)), reaching SC 12-	India, Nepal, -13 Bhutan, Bangladesh?	Mirza <i>et al.</i> (2020); Rathee <i>et al.</i> (2021); our data
septentrionalis	164-170 (165.00±4.56, n=6)	162−1 (168.94±2.5	73 71- 9, n=16)	−80 (76.67±3.50, n=6)	56-66 (63.07±2.53, n=14)	, 238–25 (241.67±7.76	0 224- 5, n=6)	$-237 (231.79\pm3.68 n=14)$	s, reaching SC 5-	-7 Nepal, India	Kramer (1977); our data
uetzi	154–172 (163.27±5.61, n=11	157–1) (164.14±3.8	71 60- 4, n=16)	−71 (66.90±3.35, n=10)	50–55 (52.08±1.62, n=14)	216–24 (230.4±7.88,	0 n=10) (21	209–223 \(6.08±3.99, n=14)	reaching SC 6- (n=2)	-8 Myanmar, India	Vogel <i>et al.</i> (2023); Biakzuala <i>et al.</i> (2024)

Nr on	Verified by	Verified by	v Locality	Sources
the map	morphology	molecular		
1	no	no	Nabang, Yingjiang, Dehong, Yunnan,	Chen et al. (2020)
			China	
			(type locality)	
2	no	yes	Tongbiguan, Yingjiang, Dehong,	Li et al. (2020)
			Yunnan, China	
3	yes	no	Chuxiong Yi, Yunnan, China	Vogel et al. (2023); our data
4	yes	no	Putao, Kachin, Myanmar	Vogel et al. (2023); our data
5	yes	no	Hukaung WS, Myitkyina , Kachin,	our data
			Myanmar	
6	yes	no	Chipwe, Myitkyina, Kachin,	our data
			Myanmar	
7	yes	no	Htingnan, Kachin, Myanmar	Smith (1940); our data
8	yes	yes	Indawgyi Lake, Myitkyina, Kachin,	Vogel et al. (2023); our data
			Myanmar	
9	yes	no	Bhamo, Kachin, Myanmar	our data
10	yes	no	Homalinn, Khandi, Sagaing,	Vogel et al. (2023); our data
			Myanmar	
11	no	yes	Chatthin WS., Sagaing, Myanmar	our data
12	yes	yes	Shwe U Daung, Pyin Oo Lwin,	Vogel et al. (2023); our data
			Mandalay, Myanmar	
13?	no	yes	Longchuan, Dehong, Yunnan, China	Zhao et al. (1998); Zhang & Rao (2008); Zhu et al. (2022)
14?	no	yes	Tuantian, Tengchong, Baoshan,	Zhao et al. (1998); Zhang & Rao (2008); Zhu et al. (2022)
			Yunnan, China	

Appendix Table S8. Literature used for the revised distribution of *Trimeresurus caudornatus*. Remark: ?: requested verification