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Nonlinear (local) Optimization

The State of the Art

P. Spellucci

TU Darmstadt, Dept. of Mathematics

May 18, 2001

Abstract

Nonlinear Optimization came into live about �fty years ago with the

seminal paper of Kuhn and Tucker [79], very shortly only after the birth of

LP praxis through Dantzig's pioneering work on the simplex algorithm.

Since then it has grown to a mathematical discipline in its own right,

with deep interconnections with nonlinear analysis and numerical analy-

sis. The appearance of more and more powerful computer equipment and

more and more involved numerical solution techniques made the solution

of nonlinear models a routine job, which forty years ago were beyond any

possible consideration. This is true at least for the solution of problems

involving some hundred variables and some thousand constraints, solution

meant in a local and weak sense, that means in the sense of identifying

points which satisfy certain necessary optimality conditions. The research

in this area came to some maturity about ten years ago and a large amount

of software is now available even in the public domain [87]. During the

past ten years many working groups throughout the world aimed at so-

lution techniques also capable of coping with true large-scale nonlinear

optimization problems. Several overview papers about this subject ap-

peared in recent years, e.g. [25] and [64]. In this overview article we give

a short introduction into NLP theory �rst and then review some of the

most promising solution techniques. Whereas convex problems can be

dealt with also in very high dimension successfully already, the treatment

of nonconvex cases o�ers resistance to a satisfactory solution approach,

since obviously methods which worked well for medium large problems

cannot be transfered to very high dimensions.
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1 NOTATION

Superscripts denote elements of sequences. Exponentiation occurs on arithmetic

expressions only, i.e. we write (�)

2

instead of �

2

. k � k denotes the euclidean

norm. Superscript T denotes transposition. We avoid the clumsy notation

(x

T

; y

T

)

T

for composite vectors and simply write (x; y). No confusion should

result from this. We make frequent use of the notation y

A

= f(y

i

) : i 2 Ag

for a subvector of a vector y with indices in A. Similarly for a matrix B B

A

denotes the matrix made up from columns of B with indices in A. Given a

vector z y = z

�

denotes the vector with components y

i

= 0 if z

i

� 0 and y

i

= z

i

otherwise. e denotes the vector (1; : : : ; 1)

T

. rf(x) denotes the gradient of a

function f , a column or a system of columns (in the case of a vectorfunction).

It is always related to the Jacobian by

rf(x) = (J

f

(x))

T

:

2 Some theory

The general nonlinear optimization problem is

NLP: Minimize f(x) with respect to x 2 S ;

where the so called feasible set S is de�ned through

S = fx 2 IR

n

: h(x) = 0; g(x) � 0g :

We assume here that h and g are de�ned everywhere on IR

n

with values in some

IR

E

and IR

I

and are of class C

2

at least, although some results are valid for the

class C

1

too. The nonsmooth case requires quite special treatment, which is

beyond the scope of this paper. For f we assume also di�erentiability of class

C

2

on an open superset of S. It is important to note that the same set S can

be represented quite di�erently by functions h and g. It is the representation

by a given triple (f; g; h) which de�nes a nonlinear programming problem in the

sequel.

From a practical point of view, other formulations of NLP are more suitable,

e.g. one standard form is

S = fx 2 IR

n

: x

u

� x � x

o

b

u

� Ax � b

o

c

u

� c(x) � c

o

g ;

where x

u

; x

o

; b

u

; b

o

; c

u

; c

o

are given constants, possibly 2 f�1; 1g or possi-

bly of equal size (de�ning an equation), and A a given matrix. This formulation

3



re
ects the di�erent numerical treatment which may be applied to di�erent parts

of the constraints. In order to obtain necessary or su�cient optimality condi-

tions, we need further assumptions on h and g, not on S. These assumptions

are known as constraint quali�cations. Much research took place for obtaining

minimal assumptions of this kind, and indeed there is known such a, in some

sense minimal one, the Guignard constraint quali�cation [69], [65]. However, �-

nally from additional considerations it turned out that the following one, which

much more lends itself to a geometric interpretation, is "the" quali�cation one

should have, �rst given by Mangasarian and Fromowitz in [85]:

MFCQ: rh(x) is of full rank

and

rh(x)

T

z = 0; rg

A

(x)

T

z > 0 is solvable

where

A = A(x) = fi 2 I : g

i

(x) � 0g

is the so called "active set". (The full rank condition means that the gradients

of the equality constraints are linearly independent. From this it follows via the

implicit function theorem that the solution set of fz : h(x) = h(z)g is locally

(around x) a smooth nonlinear manifold in IR

n

.) Geometrically MFCQ means

that at x there exists a direction z which is tangential to the nonlinear manifold

de�ned by fz : h(z) = h(x)g whereas all active inequality constraints can be

strongly improved towards feasibility along z. From the rank condition on rh

it follows that it is also possible to �nd some ~z which improves feasibility with

respect to h simultaneously if h(x) 6= 0, [114].

Observe that we have de�ned MFCQ here also for infeasible points, whereas

the usual de�nition in the literature only takes feasible points into account. A

much stronger condition is the so called regularity assumption

LICQ: (rh(x);rg

A

(x)) is of full rank :

LICQ implies MFCQ. In order to see that consider the underdetermined linear

system

�

rh(x)

T

rg

A

(x)

T

�

z =

�

O

e

�

:

which is always solvable if the matrix has full row rank, as assumed. There are

many problems of practical relevance, where the former is violated. MFCQ has

some far reaching consequences:

Theorem 2.1 Let x

�

2 S be a local minimizer of problem NLP and MFCQ

be satis�ed there. Then there exists a bounded set L of multipliers �

�

2 IR

I

+

and for every such �

�

there is a unique multiplier �

�

2 IR

E

such that there

4



holds

KTC: rf(x

�

)�rg(x

�

)�

�

�rh(x

�

)�

�

= 0 ;

g

i

(x

�

)�

�

i

= 0

with �

�

2 L and �

�

= �

�

(�

�

) :

Reverse, if KTC holds with a bounded set of multipliers (�

�

; �

�

), then MFCQ is

satis�ed. Finally, if f is convex, h a�nely linear and g

i

concave for all i 2 I (a

convex optimization problem), then KTC is also su�cient for global optimality.

The proof of this can be found in [55] respectively in standard textbooks of

nonlinear optimization, e.g. [97]. MFCQ has even more implications for a

solution of NLP, e.g. it is the weakest known condition which guarantess exact

penalizability of NLP based on properties of h and g alone, see e.g. [17] and

also [68]. By exact penalization is meant a transformation of NLP into an

unconstrained optimization problem, whose (local and global) solutions coincide

with those of NLP. Such a penalization can be obtained via penalty functions

of the form

f(x) + 
(jjh(x)jj + jjg(x) jj)

where 
 is a suitably large constant and the norm is an absolute one, i.e. jjyjj =

jj jyj jj 8 y. Here and in the following we use the following convention: given

a vector x by x

�

respectively x

+

we understand a vector with components

minf0; x

i

g resp. maxf0; x

i

g.

The Mangasarian-Fromowitz condition plays also a fundamental role in ques-

tions of stability of NLP. E.g.

Theorem 2.2 Consider the perturbed problem NLP(g

0

; h

0

) where S is replaced

by

S(g

0

; h

0

) = fx 2 IR

n

: h(x) = h

0

; g(x) � g

0

g :

For x 2 S(0; 0) there exist some ~x 2 S(h

0

; g

0

) with jjx�~xjj � C�(jjh

0

jj+jjg

+

0

jj)

for some constant C = C(x) and (h

0

; g

0

) in some neighborhood of (0; 0) if and

only if MFCQ holds at x.

For the proof, see [105]. A similar result applies to perturbations of the problem

functions h and g in a nonparametric (topological) sense [67]. Hence one may

consider a problem instance of NLP without MFCQ as incorrectly stated. This

is surely true as long as feasible points are considered only. But observe that in

practice one also needs that condition for infeasible points. Unfortunately it is

far from being true that MFCQ is naturally satis�ed there. Consider the simple

and extremely well behaved example with

n = 2; f(x) = �x

1

� x

2

; h(x) = x

2

1

+ x

2

2

� 2 and g(x) = x : (2.1)

5



The feasible set is the quarter circle of radius

p

2 in the positive quadrant and

even LICQ is satis�ed here in a small neighborhood of the feasible set. However

MFCQ is violated for x

1

< 0; x

2

< 0 and, surprisingly enough, some highly

renowned codes fail on this example if provided with an initial guess in this

region, if not g is given special treatment. (Most codes do not accept initial

guesses which violate the given bound constraints. However, it is possible to

construct similar examples with a more complicated, nonlinear g, hence this

trouble remains.)

There exist also su�cient local optimality conditions for nonconvex problems.

These involve the Hessian matix of the so called Lagrangian of the Problem

NLP, namely

L(x; �; �) = f(x)� h(x)

T

�� g(x)

T

� ;

e.g.

Theorem 2.3 Let be given a point x

�

2 S which satis�es MFCQ and KTC

with some pair (�

�

; �

�

). If in addition

z

T

r

2

xx

L(x

�

; �

�

; �

�

)z > 0 8 z 6= 0

with

rh(x

�

)

T

z = 0;

rg

i

(x

�

)

T

z � 0 if �

�

i

= 0

rg

i

(x

�

)

T

z = 0 if �

�

i

> 0 8 i 2 I and some �

�

2 L

then x

�

is a strong local minimizer of NLP.

For a proof, again see [97]. Assumptions as given in the previous theorems are

also typical for the convergence analysis of optimization algorithms for solving

NLP.

3 Unconstrained Minimization

The original problem

f(x)

!

= min

x2IR

is typically reduced to the identi�cation of a single stationary point, that means

one solution of the (in general nonlinear) equation

rf(x)

!

= 0 :

There are known also methods which aim in identifying points which in addition

satisfy the necessary second order condition "r

2

f(x

�

) positive semide�nite".

6



The classical approach here is the damped Newton method, either in form of

employing a line search along the Newton direction or in form of a trust-region

approach. Newtons method uses second derivatives and before the advent of

automatic di�erentiation techniques this has been considered as a severe disad-

vantage. Much e�ort therefore has gone into the development of methods which

avoid usage of second derivatives, which lead to the class of quasi-Newton meth-

ods. Astonishingly enough the use of e.g. the well analyzed methods from the

Broyden class, especially the BFGS-update formula, often results in algorithms

of higher e�ciency than the usage of exact second derivatives, maybe because

these methods in some sense remember the global behaviour of f whereas a true

Newton step employs pure local information only. It can safely be stated that

unconstrained problems of small and medium large dimension, say up to some

hundred variables, can nowadays routinely and safely be solved using available

quasi-Newton based codes, even if the Hessian matrix is rather illconditioned.

Unfortunately, no method of practical relevance evolved in this class which were

capable of dealing with sparsity in the Hessian (updates from the Broyden class

always give full matrices even for a diagonal Hessian). However much progress

has been made towards the solution of large-scale problems by exploiting spe-

cial structure in the Hessian or by using methods adapted from large-scale linear

solvers, see e.g. work by Griewank and Toint [66], Nash [92], Buckley and Lenir

[18], Byrd, Nocedal and Schnabel [24] and Liu and Nocedal [83]. Griewank and

Toint consider problems which show a special additive structure, the class of so

called partial separable functions, that are functions f with

f(x) =

m

X

j=1

f

j

(x

j

) with x

j

a lowdimensional subvector of x :

The central idea is to devise updating formulae for the Hessians of the f

j

by

dense matrices A

j

separately and combining these to a sparse approximation of

the Hessian of f . There is public domain software which implements this. The

method works well in the convex case and if dimensionality is small enough to

allow direct solution techniques for the linear system with the matrix

P

j

A

j

.

All other methods mentioned can be characterized as modi�cations of Newton's

method (so called inexact Newton methods) or of the method of conjugate gra-

dients, known for the linear case since 1951. Using these methods problems

with some 10000 variables can be solved without much trouble, at least if ill-

conditioning of the Hessian is not too hard.

In high dimensional unconstrained minimization the main e�ort comes from the

determination of the so called direction of descent d

k

with (rf(x

k

))

T

d

k

< 0.

With this in mind the majority of methods which have been proposed up to

now follow the linesearch model, i.e.

x

k+1

= x

k

+ �

k

d

k

;

7



where �

k

is chosen such that ff(x

k

)g decreases strongly monotonically satisfying

the principle of su�cient decrease

f(x

k

)� f(x

k+1

)! 0) rf(x

k

)! 0 ;

with d

k

satisfying the condition

j(rf(x

k

))

T

d

k

j

jjd

k

jj

� �(jjrf(x

k

)jj):

Here � is a strongly monotonically increasing function with �(0) = 0, not nec-

essarily explicitly known. The stepsize �

k

can be computed by a variety of

algorithms, the simplest one being backtracking:

�

k

= argmax

j

f�

j

�

0;k

: j 2 IN

0

and

f(x

k

)� f(x

k

+ �

j

�

0;k

d

k

) � ��

j

�

0;k

(�rf(x

k

))

T

d

k

g

where 0 < � < 1 and 0 < � <

1

2

are two constants and �

0;k

an initial

guess, maybe simply 1 or some value obtained from a preliminary interpolation,

e.g. using the values f(x

k

); f(x

k

+ d

k

) and rf(x

k

)

T

d

k

.

The so called trust-region methods also require a descent of this form, using

formally �

k

= 1. Here a local model for f is used which has the form

~

f(d) = f(x

k

) + (rf(x

k

))

T

d+

1

2

d

T

A

k

d; jjdjj � �

k

:

The (global) minimizer of this problem yields d

k

and the step x

k+1

= x

k

+ d

k

is accepted if

0 < � <

f(x

k

)� f(x

k+1

)

~

f(0)�

~

f(d

k

)

for some small constant � > 0, e.g. � = 10

�3

. There is then an adaptive

choice of �

k

. If the test fails, then �

k

is decreased and d

k

must be computed

anew, that means a further (large) linear system must be solved, which increases

the algebraic complexity considerably. But the function information need not

be computed anew and for very expensive evaluations the additional algebraic

e�ort may be worthwhile. If the step is accepted, then �

k+1

is chosen equal

to or larger than �

k

. Trust-region methods have advantages over linesearch

methods because of weaker conditions on the models matrix A

k

and stronger

theoretical results (typically these methods converge to second order necessary

points without using negative curvature information if A

k

= r

2

f(x

k

) for all k.)

A trust-region Newton's method is realized in the code TRON of Lin and Mor�e

[82].

In the (theoretically) ideal case the direction d

k

is given by Newton's method.

The linear system

r

2

f(x

k

)d

k

= �rf(x

k

)

8



can be solved by direct methods for large n if the Hessian is very sparse only.

Fortunately, it is not necessary to solve this system very precisely, at least

far from the solution, without loosing the good convergence properties. This

observation leads to the so called inexact Newton methods, where the New-

ton direction is approximated by some steps of the preconditioned conjugate

gradient method or some solver based on the Lanzcos algorithm. This latter

approach requires a routine which computes the product of the Hessian with

a given arbitrary vector. In Nash's Code TN/TNB, which is available through

NETLIB [93] this is replaced by taking a forward di�erence of the gradient

(rf(x

k

+ �v) � rf(x

k

))=� , which provokes additional problems. If the solu-

tion precision is controlled appropriately (one needs a �nal residual less than

�

k

jjrf(x

k

)jj; �

k

! 0), then superlinear convergence speed is maintained. The

computation of d

k

requires several matrix-vector products respectively several

evaluations of rf .

Alternatively one may use the so called quasi-Newton methods with limited-

memory or the nonlinear preconditioned conjugate gradient method, applied

directly to f . These methods generate directions of descent also for nonconvex

f and need as essential information only one gradient of f every step. The non-

linear conjugate gradient method, originally proposed by Fletcher and Reeves

and now known in a lot of variants is the simpler of these two approaches. Here

d

k

is computed recursively

g

k

= rf(x

k

)

ĝ

k

= Bg

k

; (B is the preconditioner, positive de�nite )




k

= (g

k

)

T

ĝ

k

d

k

=

(

ĝ

k

if k = 0( mod N)

(1�

(g

k

)

T

d

k�1




k�1

)ĝ

k

+




k




k�1

d

k�1

otherwise.

N is the so called restartindex. In theory one has N � n, and, as shown

by AlBaali [2], N may be even in�nite. With the exception of the leading

factor of ĝ

k

these are the relations of the classical (linear) cg-algorithm. The

modi�cation forces (g

k

)

T

d

k

= 


k

> 0, independently of the properties of f and

�

k

. In practical computations it makes little sense to let N grow very much

because the quality of the directions is deteriorated very strongly by roundo�

and �nally the determination of the stepsize � comes into trouble.

Remark.: There is a point which often is neglected in theoretical discussions of

this method. In the linear case, with a �xed positive de�nite Hessian, one knows

for sure that the "optimal" stepsize produces descent and never checks that,

whereas here monotonic descent of f must be veri�ed, for �xing the stepsize.

However, under the in
uence of roundo�, the test for descent may fail even if

the direction d

k

is a good one. 2

9



If one chooses N � n then N -step quadratic convergence of this method can be

shown. However, for very large n this is practically irrelevant.

The usual quasi-Newton methods replace the Hessian G

k

by a positive de�nite

"approximation" A

k

and compute d

k

from

A

k

d

k

= �rf(x

k

)

resp. with H

k

= A

�1

k

d

k

= �H

k

rf(x

k

) :

None of the quasi-Newton methods designed for the maintenance of a given

sparsity pattern of the Hessian has shown practical success, whereas the suc-

cessful ones all produce full matrices even for diagonal Hessian. That caused

the research in limited memory methods. One of the best practical methods is

based on the so called BFGS-formula which de�nes fA

k

g recursively using the

di�erences

s

k

= x

k+1

� x

k

and

y

k

= rf(x

k+1

)�rf(x

k

) :

It reads

A

k+1

= A

k

�

A

k

s

k

(s

k

)

T

A

k

(s

k

)

T

A

k

s

k

+

y

k

(y

k

)

T

(y

k

)

T

s

k

;

which for (y

k

)

T

s

k

> 0 and positive de�nite A

k

produces a positive de�nite A

k+1

.

(It is even possible to show that for uniformly convex f the eigenvalues of A

k

and A

�1

k

remain uniformly bounded under very weak conditions on the step

x

k

! x

k+1

, see e.g. [23]. The condition (y

k

)

T

s

k

> 0 is satis�ed automatically

for f uniformly convex and is enforced otherwise through the stepsize selection

using the so called Powell-Wolfe conditions). For A

k

resp. H

k

= A

�1

k

there

exists for the case A

0

=

1




I another closed formula [24]

H

k+1

= 
I + C

k

�

D

11;k

D

12;k

D

21;k

O

�

(C

k

)

T

where

C

k

=

�

S

k


Y

k

�

;

D

21;k

= �R

�1

k

;

D

12;k

= (D

21;k

)

T

;

D

11;k

= D

12;k

(�

k

+ 
(Y

k

)

T

Y

k

)D

21;k

with

(R

k

)

ij

=

�

(s

i

)

T

y

j

for 0 � i � j � k

0 otherwise

10



�

k

= diag

0�i�k

((s

i

)

T

y

i

) ;

S

k

= (s

0

; : : : ; s

k

) ;

Y

k

= (y

0

; : : : ; y

k

) :

The idea of quasi-Newton methods with limited memory simply consists in

de�ning in this formula Y

k

, S

k

, �

k

and R

k

using the last m instances

y

k

; : : : ; y

k�m+1

; s

k

; : : : ; s

k�m+1

and a variable 
 = 


k

and �xing a formula forH

k

this way. Of course this applies

for k > m only. Recommended values for m are in the range f7; : : : ; 20g. This is

implemented in the code LBFGS(B) of Byrd , Nocedal and coworkers [22]. With

m � n this method should, from theory, give the same results as the original

method, if applied to uniformly convex quadratic f . Unfortunately this is far

from being true. The numerical evaluation of H

k

using this "direct" formula

seems to be subject to numerical instability and further research in this direction

is required. However, practioners like the method because of their simplicity.

(no Hessian required). But from numerical experiments it became clear that for

strongly nonquadratic f the incomplete Newton methods are to be preferred.

Numerical experience is reported in the papers [57], [83] , [84], [120].

4 Bound constrained problems

For reasons of simple exposition we restrict the discussion to the problem

f(x)

!

= min

x2IR

n

:x�0

:

The case of general lower and upper bounds and of only partially constrained

components of x can be derived with ease from this special one. The necessary

�rst order optimality conditions now read

rf(x) � � = 0; �

i

x

i

= 0; � � 0 :

This can be rewritten as

rf(x)

i

=

�

0 if x

i

> 0

� 0 otherwise .

The �rst methods for this type of problem were of the type of active set meth-

ods. Initially f is minimized using an unconstrained technique. However, by

proper selection of the stepsize, the constraints remain satis�ed. If a variable

meets its lower bound, it is �xed there and minimization of f continues on a

boundary linear manifold of the feasible set. This process continues until ei-

ther a (resp. the) constrained minimizer is located or otherwise the components

11



of the gradient corresponding to free variables became small whereas one of

its components corresponding to a �xed variable stays relatively large and of

negative sign, indicating a false constraining manifold. In the latter case the

corresponding variable is freed and moved into the relative interior of the feasi-

ble set, with minimization of f continuing. Using some simple criteria for �xing

what is meant by "small" and "relatively large" here convergence of this process

to a constrained minimizer can be shown. This kind of method is simple to im-

plement and robust, but necessarily very slow if many changes of the active set

are required. Nash's code TNB is of this kind. All of the newer methods for this

kind of problem however make use of a special intermediate step as soon as a

variable meets its bound. This special step consists in (at least one) step of the

gradient projection method. This is given by exact (for linear or quadratic f)

or approximate minimization of f along the projection of the ray x

k

��rf(x

k

)

onto the feasible set, which in the case of bound constraints is trivial , namely

P

S

(x

k

� �rf(x

k

)) = maxf0; x

k

� �rf(x

k

)g :

with max for a vector understood componentwise. If the active set A does not

change, then unconstrained minimization of f on a constraining manifold (using

a method better than the mere gradient descent) is resumed. This leads to fast

changes in the active set and rather e�cient overall performance, e.g. Byrd

et. al. [22] (code LBFGSB), Conn, Gould und Toint [26] (code SBMIN gone into

LANCELOT), [27], Mor�e and Lin [82] , code TRON, Mor�e and Toraldo [88], [89]

(code GPCG by Felkel, see [87]) and Felkels code PL2, again see [87] and Felkels

PhD dissertation [39], see also Mor�e's MINPACK 2 project [3].

Using this technique it is possible to solve bound constrained quadratic problems

with almost the same e�ort as unconstrained ones. However, this author does

not completely participate in the enthusiasm of many colleagues for gradient

projection. It is true that the sole role of this method is the fast identi�cation

of the correct active set. Nevertheless, for a general nonlinear f it is necessary

to check the descent of f along the projected ray if the function is nonconvex

or if the computation of the two directional derivatives of f at the breakpoints

of the ray cannot be computed cheaply. Because the optimal stepsize along the

projection might be quite small for mildly illconditioned Hessian of f , this may

lead to premature termination. The optimal stepsize along a ray x��rf(x) is

of the form

�

�

2 [

1

eig

max

(G)

;

1

eig

min

(G)

](1 +O(jjrf jj)) ;

where eig(G) are the eigenvalues of the Hessian G of f . The correction

�

�

rf(x)

def

= s

can be as small as

3

p

3

2

1

cond(G)

jjx� x

opt

jj(1 +O(

1

cond(G)

))

12



whereas the di�erence f(x)� f(x+ s) may be of the order of

9

4

1

cond(G)

eig

min

(G)jjx � x

opt

jj

2

(which is much smaller than f(x)� f(x

opt

).) If this value reaches the roundo�

level in the evaluation of f the method terminates of course, at a relatively

large value jjx�x

opt

jj, even for r

2

f only mildly illconditioned. Numerical tests

veri�ed this behaviour [101]. Therefore it might �nally not be the best solution

to move along constraining manifolds at all. There exist newer approaches

which make use of a primal-dual approach, including movement in the dual

variables (rf(x))

i

for x

i

= 0, e.g. [33]. Others aim in avoiding movement along

constraining manifolds using moves that at least in a number of variables are

always interior to the feasible set, e.g. [13]. But thorough testing of all these

solution approaches on an identical testbed are necessary to assess their relative

merits.

5 General linearly constrained problems:

active set methods

Linearly restricted problems are much easier to handle than those with general

constraints. The feasible set is convex. There exist methods for the elimination

of redundant equalities and inequalities from systems of linear equality and

inequality constraints which work (at least theoretically). Numerically there

might be trouble due to illconditioning. (Indeed there are lots of examples in the

NETLIB LP-library where infeasibility is hard to discern.) With this reduction

done MFCQ is satis�ed globally for these systems. There exist �nite algorithms

to decide feasibility of such constraints (e.g. phase I of the simplex algorithm).

No one of these properties translates to general constraints.

Minimization methods of the active set type (minimization on submanifolds)

can easily be devised for general linear constraints, hence it is possible to main-

tain feasibility in linearly constrained optimization quite easily, once a feasible

point is known. Some of the sequential quadratic programming (SQP)-methods

discussed later in this paper use this fact. Contrary to this the gradient pro-

jection method cannot be implemented e�ciently for this type of constraints,

since the determination of the projection of an (infeasible) point onto a polyhe-

dron involves the solution of a convex quadratic programming problem whose

solution might be as costly as the solution of the original problem.

For the convex quadratic linearly constrained optimization problem, the so

called convex QP problem, i.e.

f(x) =

1

2

(x)

T

Ax� a

T

x where A is positive semide�nite :
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with the constraints

g(x) = G

T

x+ g

0

� 0 ; h(x) = H

T

x+ h

0

= 0 ;

including the case A = O, the LP problem, there exist specialized highly e�cient

methods, e.g. the simplex method , the dual simplex method and its generaliza-

tions to the quadratic case, e.g. methods given by Fletcher [42], Goldfarb [60]

and Goldfarb and Idnani [61]. These methods are part of many optimization

libraries and the core of most of the SQP methods for medium large problems,

which will be dealt with later in this paper. Using sparse matrix methods

these algorithms can also be extended to higher dimensional problems, for the

quadratic case see e.g. [62]. For the LP problem there exists a bunch of im-

plementations, commercial as well as in the public domain, capable of solving

problems up to 10

6

variables, given su�cient sparsity in the constraints.

There is newer work [49] which deals with the possibility to combine classical

active set technology with activation and inactivation of an arbitrary number

of constraints per step, which makes these methods even more e�cient, see

also sections 3.4.6 and 3.4.7 in [114]. Nevertheless the theoretical worst case

complexity of such an approach is always exponential in dimension (and input

size). Algorithmically, these methods can be quite involved.

Besides direct treatment of the active linear constraints via elimination tech-

niques (using a choice of numerical linear algebra techniques) there exists also

the possibility to transform the problem to a bound constrained one and using

the powerful techniques described in the previous section for the latter. For

simplicity of exposition let us assume that the constraints are already in the

form used by the primal simplex method, namely

B

T

x� b = 0 ; x � 0 :

Indeed any linearly constrained problem can be transformed such that the con-

straints take this form. Let us also assume that B is of full rank (In reality

this is often not the case, and the numerical treatment of rank de�ciency is

extremely delicate.) The �rst order necessary optimality conditions then read

rf(x)�B�� � = 0 ;

� � 0 ;

�

i

x

i

= 0 ; i = 1; : : : ; n :

If f is convex then these conditions are also su�cient for optimality of a feasible

point. If there exists a so called Slater point �x with B

T

�x�b = 0 ; �x > 0 ; then

the set of possible Lagrangian multipliers is bounded. Friedlander, Mart��nez and

Santos [54] have shown, that in the case f convex and of class C

2

the solution can

be obtained via the following bound constrained minimization problem involving

14



the primal and the dual variables x, � and � simultaneously:

M(x; �; �) =

1

2

�

jjrf(x)�B�� �jj

2

+ jjB

T

x� bjj

2

+ (x

T

�)

2

�

!

= min

x�0; ��0

:

An obvious disadvantage of this approach is the increase in dimensionality. Kan-

zow [76], using the so called Fischer-function

�(�; �) = (

p

�

2

+ �

2

� �� �)

2

succeeded in reformulating the problem as a completely unconstrained one:

K(x; �; �) =

1

2

�

jjrf(x) �B�� �jj

2

+ jjB

T

x� bjj

2

+

n

X

i=1

�(x

i

; �

i

)

�

!

= min :

Fischer's function � has the interesting property to be stationary exactly for

�; � � 0; �� = 0 and penalizing simultaneously the primal and dual bound

constraints as well as the so called complementarity condition x

i

�

i

= 0. There

are many other functions of this type which are heavily used in solution methods

for the so called complementarity problem

F (x)

T

y = 0; F (x) � 0; y � 0 :
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Numerical tests with high dimensional convex QP problems have shown supe-

riority of the Friedlander et. al. approach compared with Kanzow's. Both

methods transform a convex quadratic problem to a nonconvex nonquadratic

one, which may be considered a disadvantage. Indeed any convex QP problem

can be rewritten as a convex bound constrained QP problem, as shown by the

present author [111]. With

L(x; �; �) = f(x)� �

T

(B

T

x� b)� �

T

x

and

�(x; �; �; �; �) = �L(x; �; �) +

�

2

kB

T

x� bk

2

+

�

2

kAx� a�B�� �k

2

there holds the following: If A is positive semide�nite and in addition positive

de�nite on the kernel of B

T

, then the minimization of � with respect to x; �; �

under the bound constraints

x � 0 ; � � 0

is equivalent to solving the original QP provided � > 0 and � > �((Z

T

AZ)

�1

),

with Z an orthonormal basis of B

T

's kernel. �(:) denotes the spectral radius

of a matrix. Here the trouble comes through the determination of �. Since the

(nearly exact) determination of the theoretical lower bound for this parameter is

out of discussion for a truly large-scale problem, much remains to be done here.

All these approaches introduce an additional problem (also present for all known

primal dual di�erentiable exact penalty functions for the general NLP problem):

the condition number of the Jacobian of the correspondingKTC-system is in the

order of the square of the condition number of the KTC-system of the original

problem and there seems to be no simple way to alleviate this e�ect. It is an

open question whether there exist exact primal-dual smooth penalty functions

(a function for which a single unconstrained minimization gives the solution of

NLP together with the multipliers) without that nasty e�ect. Numerical tests

which such methods are given in [40], [115]. In [115] the QP problems are

constructed arti�cially with known solution and known condition number and

minimized with the code LBFGSB of [22]. This solver was used with identical

parameters and identical termination criterion. The computations were done on

a HP9000/715 with double precision IEEE754 arithmetic (about 16 decimals).

By proper selection of the termination criteria termination took place only if the

relative changes in the objective function were below 10

�13

. The tables which

follow show the precision obtained. DXR, DMR and DLR denote the norm of the

error divided by the norm of the true solution, measured in the euclidean norm,

for the variables x, � and � respectively. The condition number of the Hessian

and the reduced Hessian was chosen identically in f10; 100; 1000; 10000g, just

the reciprocal of the value �

min

listed in the table. Such a condition number

would not be considered overly bad. n varied from 1000 to 10000 in steps of

1000.

16



Method of Friedlander et. al.

�

min

DXR 2 DMR 2 DLR 2

10

�1

[5 � 10

�6

; 4 � 10

�5

] [6 � 10

�5

; 1 � 10

�3

] [7 � 10

�7

; 3 � 10

�5

]

10

�2

[3 � 10

�4

; 3 � 10

�3

] [5 � 10

�2

; 1 � 10

�1

] [1 � 10

�5

; 3 � 10

�3

]

10

�3

[1 � 10

�3

; 1 � 10

�2

] [8 � 10

�2

; 1 � 10

�1

] [2 � 10

�5

; 3 � 10

�2

]

10

�4

[3 � 10

�3

; 3 � 10

�2

] [9 � 10

�2

; 2 � 10

�1

] [3 � 10

�5

; 6 � 10

�2

]

Method of Kanzow

�

min

DXR 2 DMR 2 DLR 2

10

�1

[2 � 10

�5

; 1 � 10

�2

] [4 � 10

�4

; 1 � 10

�1

] [9 � 10

�8

; 3 � 10

�2

]

10

�2

[2 � 10

�3

; 2 � 10

�2

] [2 � 10

�1

; 3 � 10

�1

] [6 � 10

�3

; 8 � 10

�2

]

10

�3

[7 � 10

�3

; 4 � 10

�2

] [1 � 10

�1

; 2 � 10

�1

] [8 � 10

�3

; 1 � 10

�1

]

10

�4

[1 � 10

�2

; 5 � 10

�2

] [1 � 10

�1

; 3 � 10

�1

] [6 � 10

�3

; 1 � 10

�1

]

Method of Spellucci

�

min

DXR 2 DMR 2 DLR 2

10

�1

[1 � 10

�6

; 2 � 10

�5

] [2 � 10

�5

; 3 � 10

�4

] [2 � 10

�11

; 3 � 10

�6

]

10

�2

[7 � 10

�5

; 3 � 10

�4

] [5 � 10

�3

; 4 � 10

�2

] [4 � 10

�12

; 1 � 10

�6

]

10

�3

[2 � 10

�4

; 1 � 10

�1

] [5 � 10

�2

; 9 � 10

�2

] [6 � 10

�12

; 2 � 10

�2

]

10

�4

[3 � 10

�3

; 3 � 10

�1

] [4 � 10

�2

; 9 � 10

�2

] [2 � 10

�11

; 4 � 10

�2

]

Taking into account that such QP solvers may possibly be used as a block box

solver within other algorithms it becomes clear from the above results, which

indicate errors up to 30 percent for only moderately illconditioned problems,

that the practical value of these approaches is quite questionable.

6 Linearly constrained problems:

Interior-point methods

In the following we again restrict the discussion to the special problem

f(x)

!

= min

with the constraints

B

T

x� b = 0 ; x � 0 :

Again we require full rank of B. At �rst we only consider a convex quadratic f ,

f(x) =

1

2

x

T

Ax� b

T

x ; A positive semide�nite

including the LP case. Since Karmarkar's seminal paper [77] on the construction

of methods of polynomial complexity for the LP problem there has been an

17



enormous research e�ort on what is now known as "interior-point methods".

Meanwhile the online archive [74] contains papers which appeared since 1994,

and also a pointer to an older collection from Eberhard Kranich, making up

some thousand contributions. Today the so called primal-dual interior-point

methods are considered as the most powerful approach and we discuss here a

typical candidate from this class. The development starts with considering the

KTC conditions which in the convex case, given a Slater-point, are necessary

and su�cient characterizations of the solution:

Ax� a�B�� � = 0 ;

� � 0 ;

x � 0 ;

�

i

x

i

= 0 ; i = 1; : : : ; n

B

T

x� b = 0 :

We consider this as a nonlinear system in x; � and �. Discarding the sign-

constraints for x and � we can write this as a nonlinear equation

F (x; �; �) =

0

@

Ax� a�B�� �

�B

T

x+ b

X�

1

A

= 0

where X = diag(x

1

; : : : ; x

n

). We parametrize the problem changing the com-

plementarity condition to

Ax� a�B�� � = 0 ;

�

i

x

i

= � ; i = 1; : : : ; n ;

B

T

x� b = 0 :

On the set of "interior" points

x > 0 ; � > 0

the Jacobian of this system is always regular. For � > 0 the unique solution

describes a smooth curve with parameter �, (known as the "central trajectory")

which tends for �! 0 to one of the solutions of the initial problem.

Under the additional condition of strict complementarity of one solution this

limit point can be precisely characterized (it is the "analytic" center of the

solution set).

Remark.: Observe that in the LP- and also in the not strictly convex QP-case

the solution will not necessarily be unique. 2

This solution curve is now computed pointwise and approximately only, using

the damped Newton method for � �xed, and varying � slowly. During this

computation the constraints x > 0, � > 0 must be maintained. If this is done
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naively then one runs into serious trouble because of the singularities at the

boundary and the true art in devising an e�cient algorithm consists in a senseful

change of � and a senseful selection of the stepsize parameter for damping the

Newton step. It turns out that �

k

should depend on the duality gap

(x

k

)

T

�

k

=n :

A typical algorithm is the one of Kojima, Mizuno and Yoshise [78]:

J

F

(z

k

)�z

k

N

= �F (z

k

) to be solved : Newton step

J

F

(z

k

)�z

k

C

= �

k

ê to be solved : centering step

�

k

= �

k

((x

k

)

T

�

k

)=n ;

�z

k

= �z

k

N

+�z

k

C

def

= (�x

k

; ��

k

; ��

k

)

T

�̂

k

= minfminfx

k

i

=(��x

k

i

) : �x

k

i

< 0g;

minf�

k

i

=(���

k

i

) : ��

k

i

< 0gg ;

�

k

= minf1; �

k

�̂

k

g ;

z

k+1

= z

k

+ �

k

�z

k

:

Here z = (x; �; �), �

k

2]0; 1[, �

k

2 [0; 1[ and ê = (0; : : : ; 0; e)

T

where e =

(1; : : : ; 1)

T

2 IR

n

.

In the LP and convex QP case one can show total polynomial complexity of the

algorithm for reaching the exact solution (in the case of exact rational input

data) with a step number of O(

p

nL), where L is the so called input length. In

the case of integer coe�cients and an LP this is de�ned as

L =

X

i;j

log

2

(jb

ij

j+ 1) +

X

j

log

2

(jb

j

j+ 1) +

X

i

log

2

(ja

i

j+ 1) :

After a �nite number of steps the correct constraining manifold can be identi�ed

exactly, which allows subsequently to abandon the path following and to move

to the boundary in O(n) steps. Of course, this is a nice theoretical result (con-

cerning the so called "small step" methods) but without any practical relevance.

A rule of thumb states that "thirty steps su�ce" (for the so called "large step"

methods) to come su�ciently near to the desired solution. It remains to discuss

how to solve the linear systems in this method in the true large-scale situation.

The Jacobian of F reads

J

F

(z) =

0

@

A �B �I

�B

T

O O

� O X

1

A

; � = diag(�

i

) :

A is the Hessian of f and hence positive semide�nite for convex f . If A = O,

i.e. the LP case, then the solution of the linear systems with this matrix is

relatively easy, since it can be reduced to a linear system with the (by assump-

tion) positive de�nite and much smaller matrix B

T

�

�1

XB. In case of a general
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semide�nite A this is no longer possible and a �rst resort would be methods for

large inde�nite symmetric systems, e.g. the techniques developed by Du�, Reid

and coworkers [34], [35]. Fortunately these matrices are not general inde�nite,

such that more e�cient solution methods are available see e.g. [59], [117]. There

exist other specialized techniques, e.g. iterative preconditioned techniques like

those considered by Freund and Jarre [53]. Primal-dual methods for the LP

case are discussed in depth by St. Wright in [116].

Mittelmann [86] performed a large number of comparative studies of several

interior-point- and simplex-based methods. From his results it can be seen that

in many instances interior-point methods can by far outperform the simplex

method, but there are problems concerning the reliability of such codes, which

however continue to diminish in time to date. Since the codes tested are con-

tiuously updated and improved, the interested reader should directly consult

Mittelmanns pages for obtaining the newest results.

It is possible to derive interior-point methods from the minimization of the so

called logarithmic barrier function (a method known for a long time [41] and

disregarded subsequently because of the inherent illconditioning. In the case

of a problem satisfying the linear independence and second order su�ciency

condition E + jAj of the eigenvalues of the Hessian tend to in�nity whereas the

remaining ones stay bounded. If path following is used and the exact Hessian

is available, this has only little e�ect. However, if one uses a general method

of descent then even slight illconditioning has a detrimental e�ect due to the

loss of centrality. Restricted to the central path the conditioning of the problem

is much better). The logaritmic barrier method penalizes a step towards the

boundary by a term which grows to in�nity there, multiplied by a parameter

(the � above) which is driven to zero, such that the minimizer is approached

from the interior of the feasible set. Mostly one uses the so called logarithmic

barrier function

f(x)� �

n

X

i=1

ln(x

i

)

!

= min

x

; B

T

x� b = 0

with �! 0. The direct application of this idea requires a point x > 0, which sat-

is�es the equality constraints. This de�nes a "feasible interior-point" approach,

but there exist also "infeasible interior-point" methods, where the equality con-

straints are satis�ed in the limit only.

Remark: If the QP problem is nonconvex, then there is no known algorithm of

polynomial complexity to solve it. Even the decision whether a stationary point

found is a local minimizer, is NP hard, [108], [119]. The methods described

above cannot be used for nonconvex cases. 2

Remark: In addition to the results mentioned above it is at least of theoretical

interest that it is also possible to obtain superlinear convergence using these

methods by proper choice of the parameters, see e.g. [103] 2
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If f is a general smooth convex function, then the same techniques can in prin-

ciple be applied, simply replacing the matrix A there by r

2

f(x

k

). The step

size selection then has in addition to check the descent property of f as the sole

additional complication. An algorithm around this ideas has been developed

from HOPDM, see [37].

7 Nonlinearly constrained problems

Concerning nonlinearly constrained problems there is presently not yet such a

large progress as with linearly constrained ones, although several successful solu-

tion approaches exist. The solution of small to medium-scale general nonlinear

problems is nowadays routine. There exist commercial solvers with dense linear

algebra, e.g. in the libraries NAG and IMSL and some more powerful ones which

already use sparse matrix technology, also capable to deal with some thousand

variables at least, see e.g. the optimization software guide by Mor�e and Wright

[90] and the nonlinear programming FAQ [51]. There are even codes in the

public domain which perform quite well [86], [87].

From the older approaches like penalty and the classical augmented Lagrangian

methods there survived only the generalized reduced gradient method, e.g. the

code GRG2 of Lasdon (see e.g. [51]). This is an active set method and can be

considered as an adaptation of the simplex method to nonlinear constraints.

Typically the problem is formulated as

f(x)

!

= min ; h(x) = 0; x

J

� 0 :

by introducing positive slacks for the original inequality constraints. Given a

feasible point x a direction of descent d is computed which satis�es (rh(x))

T

d =

0 and d

i

= 0 if x

i

= 0 for i 2 J . For a prospective move

x 7! x+ �d

a restoration value r(x; d; �) is computed such that

h(x+ �d+ r(x; d; �)) � 0 ; x+ �d+ r(x; d; �) � 0 :

Of course r(x; d; �) = O(�

2

). The computation of r requires the solution of a

nonlinear system of equations for every instance of �. � itself is computed using

e.g. backtracking for f along that arc. Freedom exists in de�ning d, it may be

obtained by solving

�

A B

B

T

O

�

0

@

d

�

�

�

�

A

�

1

A

=

�

�rf(x)

0

�

(7.2)
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with the sole restriction of A being positive de�nite on the kernel of B

T

. Here

A stands for the Hessian of the Lagrangian or a replacement thereof and B is

(rh(x); (e

i

)

i2A

). In addition one needs some inactivation scheme for eliminating

indices from A based on the signs of the current multiplier estimates. This type

of method is reliable but too expensive due to the maintenance of feasibility and

the necessity of providing a feasible point �rst, which requires some phase I like

method. Therefore other approaches are currently in the center of the interest.

Especially SQPmethods, which can be interpreted as modi�ed Newton methods

for the system KTC combined with some globalization scheme (mostly via a so

called merit function) have shown enormous success for medium-scale problems.

However, for large-scale problems (with more than some thousand variables

and even larger ones) the solution approaches have not yet matured. One might

discern �ve di�erent approaches to tackle such large-scale problems:

i Modi�cation of well established methods simply by introducing sparse

matrix techniques into the linear algebra part.

ii Transformation into bound constrained problems with subsequent use of

the specialized solution techniques for the latter.

iii Methods of linearization SLP.

iv New variants of the SQP method.

v Direct adaptations of interior-point methods.

In the �rst group we �nd the further development of the code MINOS by Saunders

[107], work of Gill, Murray and Saunders on SNOPT [58] (a special instance of a

SQP-method which evolved from NPSOL) and for example the SQP methods of

Nickel and Tolle [96], Betts and Frank [6], Bartholomew-Biggs and Hernandez

[5], Ni [95] and Biegler and Nocedal [7].

MINOS is very e�cient if there are only few and only mildly nonlinear constraints.

Here a sequence of nonlinear but linearly constrained optimization problems is

solved, following Robinson's method [104]. Globalization is obtained by the

classical exterior quadratic penalty function. The linear constraints are dealt

with using the elimination technique of the simplex method (indeed, MINOS is

the long standing reference for an implementation of the simplex method.) If

nonlinearity is more pronounced and there are many nonlinear constraints, this

method is inferior to other approaches.

SNOPT takes advantage of eventual sparsity of the gradients of the constraints

using sparse matrix methods for a factorization, which is used in the steps of

a primal QP solver within a SQP method. Using this factorization a reduced

Hessian is de�ned which is needed to solve the KTC like systems. It is normally a

full matrix, hence either one restricts oneself to problems with a rather modest
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number of free variables (a case for which SNOPT was originally designed, a

discretized control problem) or one resorts to the use of limited-memory quasi-

Newton matrices.

Similarly Bartholomew-Biggs's approach is based on exploiting sparsity of con-

straint gradients and limited-memory approximations of the Hessian of the La-

grangian (this time the full matrix). However, as other users of the limited-

memory approach too, the authors report about poor performance of this tech-

nique in the case of nonconvex or illconditioned testcases. This corresponds to

the numerical experience of the present author.

The papers [4], [5] describe how sparse-matrix techniques can be used directly

in the kernel of an otherwise unchanged SQP-code, the QP solver. Since one

cannot assume that the Hessian of the Lagrangian is positive de�nite the arising

systems are not quasi-de�nite as in interior-point methods for convex QP's. The

key role here play techniques for solving sparse symmetric inde�nite systems,

as developed by Du�, Reid and coworkers and gone into the codes MA27 and

MA47 of the Harwell library. This technique also plays a key role in many

other approaches. There is a disadvantage: the user must specify the nonzero

patterns of the gradients and of the Hessian of the Lagrangian. If one uses a

modeling system, this will be provided automatically, but otherwise it may be

a prohibitively painstaking job. These systems have the form

�

A N

N

T

0

��

d

w

�

= �

�

g

c

�

:

A being sparse requires exact second derivatives or di�erence approximations

thereof, since quasi-Newton updates will be full. Finite di�erences might be very

costly, if possible at all. For problems of very high dimension the Bunch-Parlett

decomposition is of little use because of the increased �ll in involved with it

and also because of numerical problems occuring if pivoting is limited. Iterative

solvers for such systems are known "in principle", e.g. the classic SYMMLQ [98],

see also [9]. However, due to problems with detecting rank de�ciency and indef-

initeness of the reduced Hessian they are not reliable. But there is an intense

research in this area, see e.g. [53], [63]. The last cited work applies the conju-

gate gradient method to the system with the reduced Hessian without setting

this up explicitly.

There is an even more problematic point. Inde�nite QP problems which occur

quite often in the SQP method if applied to nonconvex problems using the

exact Hessian are regularized by a spectral shift, using a norm of the matrix or

a similar crude eigenvalue bound. This is done for example by Franke [52] and

by Conn, Gould and Toint in [29], with obviously bad outcome.

Ni's approach is a further development of the ideas of Nickel and Tolle. Here the

inverse of the Hessian of the Lagrangian resp. of a positive de�nite replacement

thereof is approximated by a limited-memory quasi-Newton update. The QP
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subproblem is solved via its dual. Problems with an incompatible primal QP

are circumvented by regularizing the dual such that it always has a bounded

solution.

Biegler, Nocedal und Schmid [7] consider the equality constrained case only.

In principle they use the standard SQP approach, however decomposing the

correction explicitly into a "vertical" and a "horizontal" part. (The "vertical"

part here and at other places concerns always a correction of infeasibility. This

correction is typically in the range space of the gradients of the (active) con-

straints). The essential contribution of this paper is the demonstration how to

compute this decomposition e�ciently in the large-scale case. Numerical results

are presented in the followup paper [8].

7.1 Transformation into an only bound constrained prob-

lem

Transformation into an only bound constrained problem is the basic idea of

the LANCELOT project of Conn, Gould and Toint [28]. One introduces slack

variables into the general inequality constraints and obtains a problem with

only equality constraints as general constraints and simple bound constraints as

the only inequality constraints. For reasons of simple presentation we consider

the case that all variables are bounded from below by zero.

(NLP: )

8

<

:

f(x) = min

x � 0

c(x) = 0

:

Then the LANCELOT ( large and nonlinearly constrained extended Lagrangian

optimization technique) approach is based on the following

Theorem 7.1 Let x

�

be a local solution of NLP with multipliers �

�

and �

�

for

the equality and inequality constraints. Assume rc(x

�

) being of full rank and

r

2

xx

L(x

�

; �

�

; �

�

) positive de�nite on the kernel of rc(x

�

)

T

. Then there exists

some 


0

> 0 such that for 
 � 


0

x(�)

def

= argmin

x

ff(x)� (�)

T

c(x) +




2

jjc(x)jj

2

: x � 0g

is well de�ned on U(�

�

) as a function of � and

	(�)

def

= f(x(�)) � (�)

T

c(x(�)) +




2

jjc(x(�))jj

2

posesses in �

�

an unconstrained strict local maximizer.

2

For given � x(�) will be computed by a bound constrained minimization and
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	(�) is simply the minimal value in this process. The function 	(�) itself is

maximized with respect to �. It is of great help that r	(�) = �c(x(�)) and

r

2

	(�) = �

1




I + O(

1




2

). This has the consequence that for su�ciently large


 even the simplest gradient method will converge quickly. All these relations

hold for a general c indeed locally only, whereas for an originally convex problem

the validity of the approach is global. There exist theoretical bounds for 


0

,

but these cannot be evaluated in practice. They involve the singular values of

rc and the eigenvalues of the Hessian and the reduced Hessian of the original

Lagrangian function. This facts and the necessity to choose 
 appropriately

(large enough, but not too large, since otherwise the minimization will become

troublesome) make the approach problematic. But for a long time this had been

the only access to really large-scale problems. Meanwhile alternatives evolved,

see below. If the required strong regularity assumptions are not satis�ed, this

will cause additional trouble, although a rank de�cient rc doesn't hurt too

much. The inner/outer iteration is expensive although the outer maximization

converges fast usually. It is possible to increase the e�ciency by using the

problems structure introduced by the slacks. This is discussed for example

in the paper [30]. The weak points of the extended Lagrangian approach are

discussed in the book [114], section 3.5.2 and 3.5.3, and also in [68].

7.2 Linearization methods

The pure linearization methods (SLP-methods) use the fact that there exists a

large choice of highly sophisticated software for LP problems which is capable

of solving problems with up to millions of variables and constraints (sparsity

assumed). One computes a direction of descent d

k

for a given exact penalty

function at a given guess x

k

as a solution of the LP-problem

rf(x

k

)

T

d+ 
w = min

d;w

;

�g(x

k

)�rg(x

k

)

T

d � w ;

�h(x

k

)�rh(x

k

)

T

d � w ;

h(x

k

) +rh(x

k

)

T

d � w ;

w � 0 ;

��

k

� d

k

i

� �

k

; i = 1; : : : ; n :

Here w is a slack variable, which serves the purpose to make the linear con-

straints of this subproblem always compatible, such that the subproblem is

solvable, due to the arti�cial compactness conditions on d

k

. One aims in choos-

ing 
 su�ciently large, such that w = 0 is achieved whenever this is possible.

�

k

is the so called "trust-region radius", which is computed adaptively, depend-

ing on the descent obtained for the penalty function (in this case the l

1

exact
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penaltyfunction.) This method cannot converge fast, it corresponds to the or-

dinary gradient descent in unconstrained minimization. But there exists a lot

of enhancements, see e.g. [47], [75].

7.3 Modi�cations of the SQP method

The articles [64] and [91] describe existing possibilities and the second one also

gives some review of existing software. We restrict ourselves here to a short

review of the most promising approaches for which there is some numerical

experience.

Franke [52] uses a classical SQPmethod, essentially Schittkowski's method [110].

The emerging QP subproblem

1

2

x

T

Ax� a

!

= min ; B

T

x� b = 0; C

T

x� c � 0

is then solved by an interior-point method, considering the parametrized KTC

system

Ax� a�B�� C� = 0 ;

B

T

x� b = 0 ;

w = C

T

x� c > 0 ;

� > 0 ;

�w � �e = 0

with parameter �, � ! 0. This nonlinear system is solved approximately via

Newton's method. The resulting linear systems are solved by a modi�cation of

the sparse Bunch-Parlett code from the MESCHACH-library of Steward and Leyk

(to be found as a tar-�le in netlib/cephes ). Here A represents the Hessian of

the Lagrangian. If this matrix turns out to be inde�nite, then Franke regularizes

it as done in [4], [29] using estimates of the eigenvalues provided by Gerschgorin

discs. As is to be expected the numerical results are disappointing, if this

occurs. As a further severe restriction Franke's approach misses a systematic

treatment of inconsistent QP-Problems, which occur rather often in nonconvex

cases. The approach has gone into a code HQP (see [87]) which solved a bunch

of highdimensional problems from the CUTE collection successfully.

Plantenga [100] �rst transforms a general NLP into an equality constrained one

with additional bound constraints, using slack variables for the inequality con-

straints. For reasons of simple presentation we again assume that all variables

are subject to the positivity constraints:

f(x)

!

= min ;
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c(x) = 0 ;

x � 0 :

The solution of this problem is then approximated by the minimization of a

barrier function subject to the equality constraints:

f(x)� �

n

X

i=1

ln(x

i

)

!

= min ;

c(x) = 0 ;

x > 0 ;

that means the barrier technique here is used at the outer stage as opposed to

Franke's approach, which uses this at the inner stage. The resulting equality

constrained problem in turn is solved using the method of Byrd und Omojokun.

This latter is a specialized method for equality constrained problems, a variant

of Burke's method [16]. This is a trust-region method.

In every step two QP problems with an additional trust-region constraints have

to be solved.

jjrc(x

k

)

T

v + c(x

k

)jj

2

2

!

= min ; (7.3)

jjvjj

2

2

� ��

2

k

;

rf(x

k

)

T

d+

1

2

d

T

G

k

d

!

= min ; (7.4)

rc(x

k

)

T

d = rc(x

k

)

T

v

k

; (7.5)

jjdjj

2

2

� �

2

k

:

Here v

k

is the solution of (7.3). This is an example of the so called "vertical"

correction: locally it points vertically to the boundary of the feasible set. This

vertical correction serves the purpose of diminishing the infeasibility. The para-

meter � is chosen arbitrarily, but �xed in ]0; 1[. In (7.4), (7.5) d is decomposed

into

d = v

k

+ Z

k

u

where Z

k

is a basis of the kernel of rc(x

k

)

T

. Then the condition (7.5) is satis�ed

automatically. In order to compute such a basis for the problem (7.4) one uses

sparse matrix techniques, e.g. the code MA28 of the Harwell library. The trust-

region radius �

k

is computed adaptively as usual, checking descent for the exact

penalty function

f(x)� �

n

X

i=1

ln(x

i

) + 
jjc(x)jj

2

and � is diminished in the outer iteration. The �rst version of Plantenga showed

performance comparable with LANCELOT. A detailed exposition is to be found

in the paper [80]. This method has been further developed by Hribar [73].
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A completely di�erent approach is taken by Boggs and coworkers, [10], [11], [12].

The algorithm can be used for problems with mixed constraints, but like the

authors in their papers we restrict ourselves here to the inequality constrained

case, changing also the formulation into our standard form with constraints of

the form g(x) � 0. Therefore the original problem now reads

f(x

I

)

!

= min ; g(x

I

) � 0 :

After introducing slacks x

II

� 0 the problem becomes formally one with equality

constraints, the di�erence lying in the fact that the slacks are kept strictly

positive.

x = (x

I

; x

II

) ; c(x) = g(x

I

)� x

II

= 0 :

The backbone of the method is the classical SQP method with Fletchers di�er-

entiable penalty function as a merit function. This is the function

F (x) = f(x)� �(x)

T

c(x) +




2

jjA(x)

1=2

c(x)jj

2

where

�(x) = (rc(x)

T

rc(x))

�1

rc(x)

T

rf(x) :

Since the QP solver used is an interior-point method which maintains strict pos-

itivity of the slacks (by means of the stepsize selection) , these can be eliminated

from the computation. That means that no increase of dimension occurs here.

Infeasible initial values are treated by a "big M" method, the QP problems

being of the type

c

T

d+

1

2

d

T

Ad+M�

!

= min ;

B

T

d+ b+ �e � 0 ;

� � 0 :

If the algorithm is to be used with an equality constrained problem, then this

"big M" phase persists throughout (since a strictly feasible point for the original

problem is never found). During the stepsize algorithm the estimate �(x) for the

multipliers and the weight matrix A(x) for the quadratic penalty term are frozen

in order to reduce the evaluation e�ort for the Fletcher-function. Nevertheless

every function value requires the solution of a linear system with the matrix

(rg

T

(x

k

)rg(x

k

) + Z

k

);

where g is the vector of inequality constraints and Z

k

the diagonal matrix built

from the values of the slack variables x

k;II

. This matrix is always positive

de�nite, but may be illconditioned. This introduces some trouble if the system

must be solved iteratively. Furthermore the parameter 
 in Fletchers function is

not so easy to obtain, which produces even more trouble for nonconvex problems.
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The QP solver itself is an inexact one and works with small dimensional sub-

problems of dimension up to three, which in turn are solved exactly. The basis

of these subspaces is spanned by solutions of systems of the form

(rg(x

k

)Z

�2

k

rg

T

(x

k

) +Q

k

=�

k

)p

i;k

= t

i;k

; i = 1; 2; 3

where Q

k

is an approximation for the Hessian of the Lagrangian, and �

k

is

chosen su�ciently large. These are systems of exactly the same structure as

they occur when applying the classical barrier method for inequality constrained

problems in connection with Newtons method. Should Q

k

turn out to be not

positive de�nite then also directions of negative curvature for the Lagrangian

are used. The paper [12] contains an overview over numerical results obtained

so far.

In the approach of Felkel and Spellucci the starting point again is a classical

SQP method, this time using the nondi�erentiable exact penalty function

�(x; 
) = f(x) + 
jjh(x); g(x)

�

jj

1

for a problem with mixed constraints, with 
 chosen adaptively. This function

has the advantage of requiring minimal global conditions on the problem. Its

clear disadvantage is its scale dependency, which requires adaptive and dynamic

scaling of the problem. For this task a satisfactory practical solution was given

already in [71].

A direction of descent for this function is obtained from the QP problem

1

2

d

T

B

k

d+rf(x

k

)

T

d+ 
w +

1

2

�w

2

= min ;

�g(x

k

)�rg(x

k

)

T

d � we ;

�h(x

k

)�rh(x

k

)

T

d � we ;

h(x

k

) +rh(x

k

)

T

d � we ;

w � 0 ;

where w is a single slack variable which makes the problem compatible. As

usual, e = (1; : : : ; 1)

T

. But of course one wishes to obtain w = 0 which in turn

guarantees that d

k

is also a direction of descent for the penalty term alone. This

is obtained by increasing 
 cautiously. The QP subproblem is not solved ex-

actly as in [71], but approximately only minimizing a shifted logarithmic barrier

function for this problem (observe that there are only inequality constraints due

to the transformation of an equality constraint into two inequalites with slack),

maintaining the constraint w � 0. For a restriction r

i

(d) of the QP problem the

barrier term is

b(r

i

; s; �) =

�

ln(r

i

+ s) if r

i

(x) > �s�

�

0

+ �

1

r

i

+ �

2

r

2

i

+ �

3

r

3

i

otherwise

;
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where the parameters are chosen such that C

3

continuity is satis�ed. Here s > 0

is the shift, which must be chosen su�ciently small but must not tend to zero

and � is a parameter. This avoids the singular behaviour at the solution, [102].

This minimization is accomplished by an inexact Newton method based on the

Lanczos algorithm. This QP solver has �rst been tested as a stand alone solver

for QP problems with great success, see [38]. In the current version of the NLP

solver there are to be observed several ine�ciencies. These occur if the matrices

B

k

are not su�ciently positive de�nite or if there is a large number of strongly

nonlinear equality constraints. In the last case there occur steeply grooved and

narrow valleys (due to the choice of a possible large 
 and a small slack w),

which make the method slow even if combined with second order corrections.

Also the descent property of d

k

is sometimes lost if the solution precision in the

QP solver is relaxed. Improvements are a theme of current research.

The �lterSQP method of Fletcher and Ley�er [43], [44], [45], [46] avoids the

usage of a merit function at all and thereby the complications involved in chosing

the penalty parameters appropriately. Rather it considers NLP as a special

instance of vector optimization

�

f(x

�

)

�(x

�

)

�

!

�

�

f(x)

�(x)

�

;

where

�(x)

def

= maxfjjh(x)jj

1

; jj(g(x))

�

jj

1

g :

Two types of moves are considered. If the trust-region QP problem

m

k

(d)

def

= f(x

k

) +rf(x

k

)

T

d+

1

2

d

T

A

k

d

!

= min

d

g(x

k

) +rg(x

k

)

T

d � 0 ;

h(x

k

) +rh(x

k

)

T

d = 0 ;

jjdjj � �

k

;

with the trust-region radius �

k

is solvable, then its solution is taken as a

prospective move and its acceptability is checked, otherwise a restoration move

is computed, aiming in diminishing �. This might be e.g. a solution of

w

!

= min

g(x

k

) +rg(x

k

)

T

d+ we � 0 ;

h(x

k

) +rh(x

k

)

T

d+ we � 0 ;

�h(x

k

)�rh(x

k

)

T

d+ we � 0 ;

jjdjj � �

k

:

The acceptance of a move and the trust-region radius are controlled by a so

called "�lter". This is a set of values (f(x

s

); �(x

s

)) none of which is dominated
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by the others in the sense of the half order of IR

2

and with �(x

s

) 6= 0. If the

QP problem is infeasible, the corresponding values are always added to the

�lter and a move is made by a restoration step, aiming in computing some pair

(x

k+1

; �

k+1

) such that the corresponding new QP problem becomes feasible.

Otherwise the values at x

k

are added to the �lter if

m

k

(0)�m

k

(d

k

) � ��

2

k

for some constant � > 0. The point x

k+1

= x

k

+ d

k

is accepted if

�(x

k+1

) � (1� 


�

)�

j

or f(x

k+1

) � f

j

� 


�

�

j

for all values in the �lter and if in addition

f(x

k

)� f(x

k+1

)

m

k

(0)�m

k

(d

k

)

� �

1

> 0 :

In this case �

k+1

can be increased, in all other cases �

k+1

is decreased. 


�

is

chosen arbitrarily but �xed in ]0; 1[. After adding a pair (�

k

; f

k

) to the �lter

this is purged by deleting all pairs with �

j

� 


�

�

k

and f

j

� f

k

� 


�

�

k

. This

method is quite 
exible, in principle it uses a merit function whose weights may

change every step (via scalarization of the vector optimization problem). The

code filter can be used via NEOS.

7.4 Adaptation of interior-point methods

The modi�ed SQP methods described above result in multistage algorithms

of inner/outer iteration type. Since the QP problems inherit the combinatorial

nature of the original problem, their solution itself may be quite costly, especially

in the large-scale case. Therefore there was much e�ort in avoiding this by using

some more direct approach.

Conn, Gould and Toint [29] describe a new access for minimizing general non-

linear functions subject to linear equality and bound constraints. Nonlinear

constraints could be incorporated via an augented Lagrangian. The problem

f(x)

!

= min

x

;

B

T

x = b ;

x � 0

is embedded into a higher dimensional one

f(x) +

1

2

�(� + 1)

2

!

= min

x;�

;

B

T

x� b = �(B

T

x

0

� b) ;

x � 0 ;

� � 0 ;
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where the penalty parameter � is �xed in principle but has to be determined

adaptively. The Kuhn-Tucker conditions for this extended problem become

parametrized and the parametric systems are solved by Newton's method, with

the Bunch-Parlett-decomposition as linear solver:

rf(x)�B�� � = 0 ;

�(B

T

x

0

� b)

T

�+ �(� + 1) = 0 ;

B

T

x� b� �r

0

= 0 ;

X�e� �e = 0 ;

X;� > 0 :

The logarithmic barrier function

f(x) +

1

2

�(� + 1)

2

� �

n

X

i=1

ln(x

i

)

serves as a merit function for stepsize control. In the case r

2

f(x) not positive

de�nite it is regularized by the additive term jjr

2

f(x)jjI . Numerical results

are reported for large QP problems. In the convex case the results are very

good, compared e.g. with Goulds direct method , code VE09, but for nonconvex

cases they are completely disappointing, as is to be expected from this crude

regularization. Divising a good adaptive scheme for the penalty parameter �

is di�cult. It depends besides others on the reciprocal value of the smallest

positive eigenvalue of the inde�nite matrix

�

r

2

f(x) B

B

T

O

�

:

There one also tried to make use of the classical barrier and penalty functions

more directly using some modi�cations for large dimensional problems in the

hope to take advantage of the progress made for highdimensional unconstrained

minimization, e.g. Nash and Sofer [94] or Shanno and Breitfeld [15]. The results

obtained this way are not overly encouraging. The main reason for this lies in

the fact that one loses too much of the "centering" when the penalty parameter

is changed. Along the central trajectory the behaviour of these functions is

much more amenable than a bit outside, especially if one uses quasi Newton or

conjugate gradient type methods.

Forsgren and Gill [50] use the minimization of a mixed penalty-barrier function

which was already described by Fiacco and McCormick. One of the problems in

connection with this function is the fact that the theoretical multiplier estimates

provided by these functions, e.g.

�

g

i

(x(�))

� �

i
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are quite unreliable in practice. The authors try to alleviate this e�ect by adding

penalty terms for these deviations in a primal-dual framework:

	(x; �; �; �; 
) = f(x) +

1

2�

p

X

i=1

(c

i

(x)

2

+ 
(c

i

(x) + ��

i

)

2

)

��

n

X

i=1

(ln(x

i

) + 
(ln(

x

i

�

i

�

) + 1�

x

i

�

i

�

)) :

This function is minimized simultaneously with respect to x; � and �. � is the

path parameter and we have �! 0 but 
 > 0 �xed. For � �xed minimization is

performed by the damped Newton method, making use also of directions of neg-

ative curvature, which are available through the Bunch-Parlett decomposition

of the Hessian. A special pivoting rule for this decomposition is at the heart

of their algorithm. Thereby convergence to second order stationary points can

be guaranteed. Numerical results are described in [81]. The outcome of Laux's

experiments is a severe scale dependency of the chosen penalty function. Fur-

thermore a good choice of the parameters involved is problematic and last not

least, a point satisfying the inequality constraints must be known as an initial

guess.

In the work [19] a method is investigated which treats only the slack variables

by an interior-point approach. A general NLP problem

f(x)

!

= min ; c

E

(x) = 0 ; c

I

(x) � 0

is transformed into

f(x)

!

= min ; c

E

(x) = 0 ; c

I

(x)� s = 0 ; s � 0 ;

and this in turn is embedded in a family of equality constrained problems

f(x) + �

m

X

i=1

ln(s

i

)

!

= min ;

c

E

(x) = 0 ;

c

I

(x)� s = 0 :

For � �xed this is an equality constrained nonlinear optimization problem which

is solved by a SQP method. A trust-region approach is taken. It turns out that

in constructing the trust-region the slack variables need a special treatment,

namely using a norm like

jj

�

d

x

maxf�;�gS

�1

d

s

�

jj � �

where d

x

designates the change in x and d

s

the change in s and, as usual,

S = diag(s

1

; : : : ; s

I

). � is a chosen constant. A quite general convergence
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theory is developed. These investigations are continued in the paper by Byrd,

Hribar and Nocedal [20]. There comes up an essentially new aspect, namely the

formulation of an adequate quadratic model for the Lagrangian of the barrier-

problem with respect to the slack variable s. It turns out that the obvious

choice

�S

�2

for the quadratic part corresponding to s is not favourable, since it gives direc-

tions which tend to violate feasibility of s and hence enforce a reduction of the

step size. Much better seems to be the choice

S

�1

� ;

where � designates the diagonal matrix with the multiplier estimates for the

equality constraints c

i

(x) + s = 0. These estimates are computed separately

using the least squares estimate from the KTC conditions for x and s �xed.

The paper contains detailed discussion how to solve the subproblems e�ciently

and approximately only. Promising numerical results are presented for the im-

plementation NITRO. NITRO can be tested via the NEOS submission tool.

Gay, Overton and M. Wright [56] consider a general NLP problem with mixed

equality and inequality constraints. Di�erent from their competitors they treat

the inequality constraints directly by barrier terms. Hence

f(x)

!

= min ; h(x) = 0 ; g(x) � 0

is solved via

f(x)� �

X

i

ln(g

i

(x))

!

= min ; h(x) = 0

with �! 0. The parameter dependent KTC conditions

rh(x)y +rg(x)z �rf(x) = 0 ;

h(x) = 0 ;

G(x)z � �e = 0 ; G = diag(g

i

(x))

are solved by Newtons method, after symmetrization and partial elimination:

�

�K A

A

T

O

��

d

x

d

y

�

=

�

rf � Ay � �B

T

G

�1

e

�h

�

with K = H+B

T

G

�1

ZB :

An inde�nite K becomes regularized to de�niteness, but such that its eigenval-

ues tending to in�nity are not touched. Two merit functions are used, namely

the norm of the right hand side of the Newton equation and periodically also

some type of extended Lagrangian

f(x)� �

X

i

ln g

i

(x) � y

T

h(x) +

c

2

jjh(x)jj

2

;
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(with c �nite and in principle �xed). This device serves the purpose to prevent

convergence of Newtons method to saddle points or maxima. Numerical results

for low dimensional problems are reported. No complete convergence analysis

seems to exist.

Vanberbei and Shanno [118] make use of the powerful QP solver LOQO of Van-

derbei. It serves at the heart of a SQP code. Here too inequality constraints

g(x) � 0 are transformed into equations using positive slacks which in turn are

treated by the logarithmic barrier term. The method computes directions of

descent for the inexact penalty barrier function

f(x)� �

m

X

i=1

ln(s

i

) +

�

2

jjg(x)� sjj

2

from the reduced system

0

@

H O �A

O �S

�1

� I

�A

T

I O

1

A

0

@

�x

�s

��

1

A

=

0

@

�rf +A�

�S

�1

e� �

g(x)� s

1

A

; (7.6)

where A = rg(x) and H = r

2

xx

L. This descent property is obtained for �

su�ciently large. Inde�nite H is regularized by addition of a suitable multiple

of the unit matrix. � is chosen dependent on the duality gap:

� = 
minf(1� r)

1� �

�

; 2g

3

s

T

�

I

with

0 < r < 1 ; � =

min

i

s

i

�

i

s

T

�=I

:

(Remember that I is the number of inequality constraints). In principle we must

have � ! 1, but since in practice one contents oneself with an approximate

solution anyway the authors consider this fact as not so critical. The paper

also describes a special treatment of bound- and interval constraints such that

only general inequalities must be transformed by slacks. Equality constraints

are dealt with directly by a quadratic penalty term. The paper also reports

numerical experience. LOQO can also be used through NEOS.

Akrotirianakis and Rustem [1] describe an approach similar to the one given by

Vanderbei und Shanno. Starting point is a NLP problem

f(x)

!

= min; g(x) = 0 ; x � 0 :

As a merit function serves the mixed penalty-barrier function

�(x; c; �) = f(x)� �

n

X

i=1

ln(x

i

) +

c

2

jjg(x)jj

2
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subject to the equality constraints

g(x) = 0 ;

that means the equality constraints are treated in dublicate: they enter the

merit function and are posed explicitly. The barrier parameter � is controlled

in an outer and the penalty parameter c in an inner iteration. For � and c �xed

the directions of descent come from a Newton step for a zero of the function

F (x; y; z; c; �) =

0

@

rf(x) � z + c(rg(x))g(x) �rg(x)y

g(x)

XZe� �e

1

A

Here y represents the vector of Lagrange multipliers corresponding to the equal-

ity constraints and z is obtained as a new free variable from the relation

z = �X

�1

e :

As usual e = (1; : : : ; 1)

T

. z corresponds to the Lagrange multipliers of the

bounds. For su�ciently large c the descent property of this direction can be

guaranteed and the adaptive computation of c is based on that fact. The Jaco-

bian of F has as left upper block

H = r

2

f(x) � y �r

2

g(x) + crg(x)(rg(x))

T

+ cg(x)�r

2

g(x)

H +X

�1

Z must be invertible in order to have a well de�ned direction d. This

is of course a restrictive condition, which also occurs in other work. Even

stronger, uniform boundedness and uniform positive de�niteness is assumed for

this matrix in the convergence analysis. Di�erent stepsizes are used for the

primal and the dual variables. For a special version of the algorithm there is

a proof of convergence. No numerical results are presented. The proof of the

uniform boundedness of c needed for that seems to be incomplete.

7.5 Homotopy methods for the KTC-system

Whereas the work of the previous section results in some inner/outer iteration

scheme with the possibility to choose subalgorithms independently it is also

possible to use the primal-dual interior-point formulation known from convex

LP and QP directly for a general NLP. This is shown in the interesting paper of

El Bakry et. al. in [32]. These investigations have been continued by Durazzi

[36]. The procedure is best interpreted as a transfer of the Kojima, Mizuno and

Yoshise method from the LP to the the NLP case. As is known that one results

in the LP case to the most e�cient solvers presently known. Starting point is a

general problem with mixed constraints h(x) = 0 and g(x) � 0. The trajectory
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de�ned by the system

rf(x)�rh(x)��rg(x)� = 0 ;

�� z = 0 ;

h(x) = 0 ;

g(x)� s = 0 ;

ZSe� �e = 0 ;

formally written as (x; �; �; z; s)(�) with �; z; s > 0 is traced with � ! 0, the

nonlinear system in turn being approximately solved by Newton's method. The

Jacobian of this system can be symmetrized and once again one has to solve a

large symmetric inde�nite linear system every step. Some numerical evidence

with small-scale problems is provided. There are some critical points. On point

is the large number of arti�cial unknowns ( a total of n + 3m + p, if m is the

dimension of g and p that of h). The structure of the linear system is much

less amenable than in the LP case. The convergence conditions are quite strong

and seem to restrict the treatment to convex problems. Among other things

one needs regularity of the matrix

r

2

xx

L(x; �; �) +rg(x)S

�1

Zrg(x)

T

for all values of x; �; �; z; s in a neighborhood of the trajectory.

A quite similar approach is followed by Epelly, Gondzio and Vial [37] who

restrict themselves to the convex case from the very beginning.

8 Some numerical results

In the following we give an excerpt of the results obtained by the COPS project

[31]. The test comprises four solvers, LANCELOT, LOQO, MINOS and SNOPT in

their newest version (2000). Default options were used for all codes. The prob-

lems are formulated in AMPL. Most of them are discretized control problems.

There are also three large QP problems in the testsuite. The evaluation was

done on a SUN ULTRA SPARC 2 under Solaris 7. We give here a part of

the results only, for the lowest and the highest dimension tested. The table

gives computing time in seconds and the optimal value of the objective func-

tion. "F" denotes a failure (either premature termination or time out). The

numbers x-y-z give the number of variables, of the contraints and of the bound

constraints.
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problem/solver LANCELOT LOQO MINOS SNOPT

largest small polygon 12.83 3.49 2.11 1.14

50-49-50 7.9715e-01 7.64714e-01 7.64383e-01 7.79740e-01

largest small polygon F F 344.81 256.6

200-199-200 7.72803e-01 7.85040e-01

electron on sphere 3.98 0.84 6.22 9.65

75-25-0 2.43812e+02 2.43812e+02 2.43812e+02 2.43812e+02

electron on sphere 371.6 2437.78 F 1600.48

600-200-0 1.84389e+04 1.84389e+04 1.84390e+04

hanging chain 13.91 17.24 1.22 5.72

100-51-0 5.07230e+00 5.07226e+00 5.07226e+00 5.07226e+00

hanging chain 577.24 1028.35 73.9 F

800-401-0 5.06788e+00 5.06862e+00 5.06862e+00

shape of cam 42.74 0.68 0.87 0.6

100-202-100 4.30178e+00(F) 4.28414e+00 4.28414e+00 4.28414e+00

shape of cam 1887.03 12.47 21.72 25.17

800-1602-800 4.85693e+00(F) 4.27427e+00 4.27426e+00 4.23739e+00

alpha-pinene 1426.01 28.85 1.98 3.74

505-500-5 1.96766e+01 1.98715e+01 1.98715e+01 1.98715e+01

alpha-pinene F 16.87 F 235.44

4005-4000-5 1.98721e+01 1.98721e+01

marine population 623.75 2.07 6.58 85.37

615-592-15 1.97522e+07 1.97522e+07 1.97522e+07 1.97522e+07

marine population F 38.4 F 1502.26

4815-4792-15 1.97465e+07 1.97465e+07


ow in channel F 1.55 1.09 2.14

400-400-0 1.00000 1.00000 1.00000


ow in channel F 22.54 32.65 98.5

3200-3200-0 1.00000 1.00000 1.00000

robot arm F 1.03 2.82 10.22

460-300-306 9.14687 9.14687 9.14687

robot arm F F 161.18 2671.63

3610-2400-2406 9.14108 9.14101

particle steering 30.83 923.3 1.58 3.25

256-200-51 5.54672e-01 5.54668e-01 5.54668e-01 5.54668e-01

particle steering 2997.88 F 143.09 147.37

2006-1600-401 5.54552e-01 5.54572e-01 5.54573e-01

goddar rocket F 3.34 1.69 3.04

205-150-153 1.01281 1.01280 1.01282

goddar rocket F 12.42 F 64.48

1605-1200-1203 1.01283 F 1.01283

hang glider F F F 11.14

256-200-153 1.28239e+03

hang glider F F F 1268.67

2006-1601-1203 1.24797e+03

cracking oil 918.28 1.37 5.04 5.25

503-500-3 5.23633e-03 5.23664e-03 5.23664e-03 5.23664e-03

cracking oil F 49.62 161.99 179.71

4003-4000-3 5.23659e-03 5.23659e-03 5.23659e-03

methanol to hydrocarbon 196.62 2.13 5.05 12.92

605-600-5 9.02300e-03 9.02229e-03 9.02228e-03 9.02228e-03

methanol to hydrocarbon F 45.2 263.67 512.16

4805-4800-5 9.02229e-03 9.02228e-03 9.02228e-03
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problem/solver LANCELOT LOQO MINOS SNOPT

catalyst mixing 7.71 0.66 2.39 3.99

303-200-101 -4.77480e-02 -4.80694e-02 -4.80605e-02 -4.80579e-02

catalyst mixing 424.61 8.25 17.88 181.24

2403-1600-801 -4.71856e-02 -4.80559e-02 -4.74787e-02 -4.80451e-02

elastic plastic torsion 3.01 2.99 108.31 125.58

1250-0-1250 -4.17510e-01 -4.17510e-01 -4.17510e-01 -4.17510e-01

elastic plastic torsion 17.19 15.86 F F

5000-0-5000 -4.18239e-01 -4.18239e-01

journal bearing 3.02 3.36 173.65 722.68

1250-0-1250 -1.54015e-01 -1.54015e-01 -1.54015e-01 -1.54015e-01

journal bearing 17.89 13.33 F F

5000-0-5000 -1.55042e-01 -1.55042e-01

obstacle 2.77 2.98 103.76 137.68

1250-0-1250 2.51948 2.51948 2.51948 2.51948

obstacle 16.33 F F F

5000-0-5000 2.50694e+00

Besides these tests there are also many interesting benchmarks provided by

H.D.Mittelmann [86], showing the same e�ect: there is no clear cut winner and

reliability of the codes is far beyond the level meanwhile reached for small- and

medium-scale problems. Hence much remains to be done.

9 Conclusion

The great impact of interior-point methods on present optimization technology

can clearly be seen from the discussion above. Summarizing it can be safely

said that convex problems, be it QP or more general NLP problems, can be

solved by a variety of methods with good success, even in the large-scale case.

As T. Rockafellar states: "The great watershed in optimization isn't between

linearity and nonlinearity but convexity and nonconvexity" [106]. First of all

we must be prepared to accept a local solution, possibly much weaker than the

desired global one. Which of the possibly many local solutions is identi�ed is

subject to details of the algorithm's implementation and the initial guess and

it is almost impossible to take in
uence on that. For a nonconvex problem

often some kind of restoration steps must be used. This typically requires the

linear independence of the gradients of the violated constraints or a least the

selection of a subset of constraints which satisfy this condition. In the small-

scale area the QR or the SVD decomposition of the matrix of these gradients

helps to do that. This technique cannot be used for large-scale applications

because the enormous �ll in produced by orthogonal transformations. Other

linear algebra techniques are much less reliable. The detection of infeasibility
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cannot be based on the unboundedness of the dual variables. The detection of

nonconvexity via detection of inde�niteness of the Hessian of the Lagrangian is

an unreliable process, especially for large scale applications. How to regularize a

nonconvex problem, especially in connection with interior-point methods, is an

open problem. The crude technique of addition of a multiple of the unit matrix

is clearly inadequate. Hence much remains to be done in order to increase the

reliability and e�ciency of existing methods.
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